首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   16篇
  国内免费   1篇
电工技术   2篇
化学工业   49篇
金属工艺   15篇
机械仪表   5篇
建筑科学   6篇
能源动力   15篇
轻工业   19篇
水利工程   4篇
石油天然气   13篇
无线电   25篇
一般工业技术   58篇
冶金工业   5篇
自动化技术   31篇
  2024年   1篇
  2023年   1篇
  2022年   9篇
  2021年   8篇
  2020年   10篇
  2019年   16篇
  2018年   19篇
  2017年   16篇
  2016年   14篇
  2015年   13篇
  2014年   11篇
  2013年   21篇
  2012年   15篇
  2011年   15篇
  2010年   18篇
  2009年   9篇
  2008年   10篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  1998年   2篇
  1997年   6篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   2篇
排序方式: 共有247条查询结果,搜索用时 15 毫秒
1.
The Biot's acoustics theory, which describes acoustic wave propagation in a porous medium, and computer simulation techniques were utilized to model the behavior of acoustic waves entering and leaving a mixing zone in a miscible displacement in porous media. The results indicate that the angles of waves produced by a mixing zone are equal to angles of waves produced by an abrupt fluid-fluid interface. Therefore, acoustic methods and a relationship between the incident, reflection, and transmission angles can be used to determine the location and thickness of the mixing zone during a miscible displacement process in porous media.  相似文献   
2.
Rainfall forecasting plays many important role in water resources studies such as river training works and design of flood warning systems. Recent advancement in artificial intelligence and in particular techniques aimed at converting input to output for highly nonlinear, non-convex and dimensionalized processes such as rainfall field, provide an alternative approach for developing rainfall forecasting model. Artificial neural networks (ANNs), which perform a nonlinear mapping between inputs and outputs, are such a technique. Current literatures on artificial neural networks show that the selection of network architecture and its efficient training procedure are major obstacles for their daily usage. In this paper, feed-forward type networks will be developed to simulate the rainfall field and a so-called back propagation (BP) algorithm coupled with genetic algorithm (GA) will be used to train and optimize the networks. The technique will be implemented to forecast rainfall for a number of times using rainfall hyetograph of recording rain gauges in the Upper Parramatta catchment in the western suburbs of Sydney, Australia. Results of the study showed the structuring of ANN network with the input parameter selection, when coupled with GA, performed better compared to similar work of using ANN alone.  相似文献   
3.
New mixed matrix membranes of polysulfone were synthesized by different content of hexagonal mesoporous silica coated by polyaniline and used for nickel and lead ion removal. The membranes were characterized by FESEM, XRD, BET, TGA, and FTIR, and zeta potential measurements. The results showed that PANi/HMS particles enhanced the membrane porosity and permeability. These effects were explained according to an increase of the membrane hydrophilicity due to the formation of new functional groups during membrane casting. The results showed that metal ion rejection was performed by a filtration–adsorption mechanism, resulting in fixation of metal ions on the active sites of membranes.  相似文献   
4.
Factors such as inhibitor concentration, solution hydrodynamics, and temperature influence the performance of corrosion inhibitor mixtures. The simultaneous studying of the impact of different factors is a time- and cost-consuming process. The use of experimental design methods can be useful in minimizing the number of experiments and finding local optimized conditions for factors under the investigation. In the present work, the inhibition performance of a three-component inhibitor mixture against corrosion of St37 steel rotating disk electrode, RDE, was studied. The mixture was composed of citric acid, lanthanum(III) nitrate, and tetrabutylammonium perchlorate. In order to decrease the number of experiments, the L16 Taguchi orthogonal array was used. The “control factors” were the concentration of each component and the rotation rate of RDE and the “response factor” was the inhibition efficiency. The scanning electron microscopy and energy dispersive x-ray spectroscopy techniques verified the formation of islands of adsorbed citrate complexes with lanthanum ions and insoluble lanthanum(III) hydroxide. From the Taguchi analysis results the mixture of 0.50 mM lanthanum(III) nitrate, 0.50 mM citric acid, and 2.0 mM tetrabutylammonium perchlorate under the electrode rotation rate of 1000 rpm was found as optimum conditions.  相似文献   
5.
Because of the major limitations in drinking water resources, the industries need to use unprocessed water sources for their cooling systems; these water resources contain major amount of hardening cations. So, mineral scales are formed in cooling water systems during the time and cause major problems. The use of green anti-scaling materials such as carboxylic acids is considered due to their low risks of environmental pollution. In the present work, the scale inhibition performance of tartaric acid as a green organic material was evaluated. Chemical screening tests, cathodic and anodic voltammetry measurements and electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FESEM), energy-dispersive x-ray and x-ray diffraction, were used for the evaluation of the scale inhibition performance. The results showed that tartaric acid can prevent calcium carbonate precipitation significantly. The hard water solution with 2.0 mM of tartaric acid indicated the highest scale inhibition efficiency (ca. 68%). The voltammetry, EIS and FESEM results verified that tartaric acid can form smooth and homogeneous film on steel surface through formation of Fe(III)-tartrate complexes and retard the local precipitation of calcium carbonate deposits.  相似文献   
6.

Efforts have been devoted to synthesize and characterize processable polymers with desired properties. Herein, four different series of aromatic and aliphatic terpolyamides were prepared via solution phase polycondensation of 4,4′-oxydianiline and hexamethylenediamine (HMDA) with various diacids chlorides (isophthalyol dichloride, terepthalyol dichloride, 1, 1′-ferrocene dicarboxylic acid chloride and trans-azobenzene-4, 4′-dicarbonyl chloride). The structural, morphological and physico-chemical nature of as prepared polymers was explored by Fourier-transform infrared spectroscopy, scanning electron microscopy, thermal analysis (TGA and DSC), and wide-angle x-ray diffraction. Moreover, an aliphatic diamine was incorporated in varying concentration as a flexible methylene spacer and the effect of its concentration on the properties of polyamides was also studied. Changes in various physico-chemical properties such as solubility, inherent viscosity, surface morphology and flame retarding behaviour were investigated. Marked difference in morphology and solubility was observed with the change in the ratio of segments in the chain. Inherent viscosities of polymers ranged from 1.8052–1.6274 dl/g indicating reasonably moderate molecular weights. Interestingly, ferrocene based aromatic polymers were more thermally stable (Tg 260 °C, Ti 310 °C, Th 525 °C, Tf 720 °C, for PF0), and also found to exhibit best flame retarding behavior (limiting oxygen index value for PF0is LOI 33.15%).

  相似文献   
7.
To slow down the initial biodegradation rate of magnesium (Mg) alloy, crystalline nano-sized bioactive glass coating was used to deposit on micro-arc oxidized AZ91 samples via electrophoretic deposition (EPD). Zeta potential and conductivity of the bioactive glass suspension were characterized at various pH values to identify the most stable dispersion conditions. The bone-bonding properties of bioactive glass coated samples were evaluated in terms of apatite-forming ability during the immersion in simulated body fluid (SBF) solution. Results revealed that the ability to form a bioactive glass coating via EPD was influenced by the degree of its crystalline phase composition. Moreover, the potentiodynamic polarization tests recorded significant drops in corrosion current density and corrosion rate of the coated samples which implies a good level of corrosion protective behavior. These preliminary results show that this process will enable the development of Mg implants in the later stage of bone healing.  相似文献   
8.
A series of nanocrystalline Li0.25Ni0.5Fe2.25−xErxO4 (x=0.00, 0.02, 0.06, 0.08, and 0.10) ferrite powders, having a cubic spinel crystal structure and a low value of coercivity, was synthesized by the sol–gel auto-combustion route. The structure, morphology and magnetic properties of the prepared nanoferrites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and the magnetic property measurement system (MPMS). A well-defined single phase spinel structure is confirmed in all the samples by X-ray diffraction analysis. The lattice parameters of the samples increase slightly with increasing the erbium content. The crystallite size of the Er-doped samples is smaller than that of pure Li–Ni ferrite, and decrease regularly in the range of 36.0–14.5 nm. It has been observed that the magnetic properties of these ferrites are strongly influenced by the added erbium content. The magnetic measurements indicate that saturation magnetization (Ms) and coercivity (Hc) decrease gradually with the increase of Er content in the lattice.  相似文献   
9.
10.
Moldavian balm (Dracocephalum moldavica L., Lamiaceae) is a perennial herb native to central Asia and naturalized in eastern and central Europe. It is commonly consumed as a food-related product and as a herbal preparation because of its reputed medicinal properties. Despite its importance, few reports exist in the literature regarding the chemistry or antioxidant activity of this species. In this study, the aerial material of Moldavian balm collected from Iran was extracted by Soxhlet using seven solvents of different polarity, viz., petroleum ether, dichloromethane, acetonitrile, ethyl acetate, methanol, n-butanol and water. The qualitative-quantitative chemical composition of each extract was determined using high-performance liquid chromatography coupled to photodiode array detection. For each extract, the total phenolic content was estimated as was the in vitro antioxidant activity using the iron(III) reduction assay, the β-carotene-linoleic acid bleaching assay and the 1,1-diphenyl-2-picrylhydrazyl and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonate) free radical scavenging assays. Hydroxylated cinnamic acids, their derivatives and flavonoids were identified and quantified within the extracts, with rosmarinic acid being the most abundant component identified. The extracts demonstrated different degrees of potency within each assay, however, the observed pattern was not necessarily replicated between assays indicating the importance of the use of more than one screening technique to estimate the antioxidant activity of plant extracts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号