首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
化学工业   20篇
轻工业   5篇
一般工业技术   4篇
冶金工业   10篇
自动化技术   6篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2008年   2篇
  2007年   1篇
  2005年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有45条查询结果,搜索用时 375 毫秒
1.
2.
3.
4.
5.
Journal of Intelligent Manufacturing - This article presents a novel approach for the automated 3D-layout planning of multi-station assembly lines. The planning method is based on a comprehensive...  相似文献   
6.
7.
Historically explosion accidents are linked with energetic materials. There is the further belief, that the proneness to accidents—and their severity—is linked with the sensitivity of these explosives. Consequently there exist seemingly very insensitive materials for which it is believed that their accidental explosion can be ignored, so that safety distances can be reduced to those that apply to materials for which the hazard is assumed to be mass fire rather than mass detonation. Evidence is presented here that shows these assumptions to be invalid. Reports of explosion accidents are gathered here for substances that are not generally considered to be explosives (non UN‐class 1 substances, like ammonium nitrate (AN), neat alkali metal chlorates, and even hypochlorites and nitromethane). In most of these cases the proneness of accidents had not been foreseen by testing. The basic explosion mechanisms are of a more general nature than simply those that apply to high explosives. Explosion is not solely a matter of energy, but of any physical power conversion. In order to prove this, a survey of explosion events is given: Natural events, like the impacts of celestial bodies and volcanic eruptions. Fuel/liquid interactions in nature are industrial risks too, which occur at very different occasions and sites: Cellulose processing, the oil industry, foundries, power stations, explosions of hot cinders, chemical processing, fire extinguishing, and (most common) in the kitchen, and (most catastrophic) in nuclear reactors. Explosions of similar type are Hydraulic Transients, Bubble resonance explosions with the possibility of associated chemical room explosions (BLEVE), Rollovers. Second order effects are sorption/desorption resonance explosions, which most powerful also occur in nature (Nios Lake (CO2‐release), Kivu Lake, Monoun Lake, 1984, Tanganjika Lake, all in Africa, and the Ocracoke in the Gulf of Mexico (CH4‐release)—and at the lowest end shaken champagne bottles. All these explosions are “low probability–high risk” explosive phenomena, which are scarcely coverable by risk studies with the present day scientific tools on explosion phenomena. Up to now only in the nuclear branch a quantitative risk of explosion was brought to attention, therefore, the validity of this approach was carefully examinated.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号