首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
电工技术   1篇
无线电   12篇
冶金工业   2篇
自动化技术   4篇
  2022年   1篇
  2016年   1篇
  2012年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   5篇
  1992年   1篇
  1988年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
2.
The detection of ischemic cardiac beats from a patient's electrocardiogram (EGG) signal is based on the characteristics of a specific part of the beat called the ST segment. The correct classification of the beats relies heavily on the efficient and accurate extraction of the ST segment features. An algorithm is developed for this feature extraction based on nonlinear principal component analysis (NLPCA). NLPCA is a method for nonlinear feature extraction that is usually implemented by a multilayer neural network. It has been observed to have better performance, compared with linear principal component analysis (PCA), in complex problems where the relationships between the variables are not linear. In this paper, the NLPCA techniques are used to classify each segment into one of two classes: normal and abnormal (ST+, ST-, or artifact). During the algorithm training phase, only normal patterns are used, and for classification purposes, we use only two nonlinear features for each ST segment. The distribution of these features is modeled using a radial basis function network (RBFN). Test results using the European ST-T database show that using only two nonlinear components and a training set of 1000 normal samples from each file produce a correct classification rate of approximately 80% for the normal beats and higher than 90% for the ischemic beats  相似文献   
3.
4.
Two ECG processing techniques are described for the classification of QRSs, PVCs and normal and ischaemic beats. The techniques use neural network (NN) technology in two ways. The first technique, uses nonlinear ECG mapping preprocessing and subsequently for classification uses a shrinking algorithm based on NNs. This technique is applied to the QRS/PVC problem with good result. The second technique is based on the Bidirectional Associative Memory (BAM) NN and is used to distinguish normal from ischaemic beats. In this technique the ECG beat is treated as a digitized image which is then transformed into a bipolar vector suitable for input in the BAM. The results show that this method, if properly calibrated, can result in a fast and reliable ischaemic beat detection algorithm.  相似文献   
5.
The most widely used signal in clinical practice is the ECG. ECG conveys information regarding the electrical function of the heart, by altering the shape of its constituent waves, namely the P, QRS, and T waves. Thus, the required tasks of ECG processing are the reliable recognition of these waves, and the accurate measurement of clinically important parameters measured from the temporal distribution of the ECG constituent waves. In this paper, we shall review some current trends on ECG pattern recognition. In particular, we shall review non-linear transformations of the ECG, the use of principal component analysis (linear and non-linear), ways to map the transformed data into n-dimensional spaces, and the use of neural networks (NN) based techniques for ECG pattern recognition and classification. The problems we shall deal with are the QRS/PVC recognition and classification, the recognition of ischemic beats and episodes, and the detection of atrial fibrillation. Finally, a generalised approach to the classification problems in n-dimensional spaces will be presented using among others NN, radial basis function networks (RBFN) and non-linear principal component analysis (NLPCA) techniques. The performance measures of the sensitivity and specificity of these algorithms will also be presented using as training and testing data sets from the MIT-BIH and the European ST-T databases.  相似文献   
6.

Implementing information and communications technology (ICT) at scale requires evaluation processes to capture the impact on users as well as the infrastructure into which it is being introduced. For older adults living with cognitive impairment, this requires evaluation that can accommodate different levels of cognitive impairment, alongside input from family and formal caregivers, plus stakeholder organisations. The European Horizon 2020 project INdependent LIving support Functions for the Elderly (IN LIFE) set out to integrate 17 technologies into a single digital platform for older people living with cognitive impairment plus their families, care providers and stakeholders. The IN LIFE evaluation took place across six national pilot sites to examine a number of variables including impact on the users, user acceptance of the individual services and the overall platform, plus the economic case for the IN LIFE platform. The results confirmed the interest and need among older adults, family caregivers, formal caregivers and stakeholders, for information and communications technology (ICT). Relative to the baseline, quality of life improved and cognition stabilised; however, there was an overall reluctance to pay for the platform. The findings provide insights into existing barriers and challenges for adoption of ICT for older people living with cognitive impairment.

  相似文献   
7.
In this paper, an ontology-based system (KnowBaSICS-M) is presented for the semantic management of Medical Computational Problems (MCPs), i.e., medical problems and computerised algorithmic solutions. The system provides an open environment, which: (1) allows clinicians and researchers to retrieve potential algorithmic solutions pertinent to a medical problem and (2) enables incorporation of new MCPs into its underlying Knowledge Base (KB). KnowBaSICS-M is a modular system for MCP acquisition and discovery that relies on an innovative ontology-based model incorporating concepts from the Unified Medical Language System (UMLS). Information retrieval (IR) is based on an ontology-based Vector Space Model (VSM) that estimates the similarity among user-defined MCP search criteria and registered MCP solutions in the KB. The results of a preliminary evaluation and specific examples of use are presented to illustrate the benefits of the system. KnowBaSICS-M constitutes an approach towards the construction of an integrated and manageable MCP repository for the biomedical research community.  相似文献   
8.
As we are moving rapidly to a digital economy, accessing and effectively using Information and Communication Technologies (ICT) in everyday life is widely recognized as an important requirement. However, the accessibility technologies that we have up to date are meeting the needs of only some, at a very high cost and, as a consequence, accessible ICT for all people still remains a major research and development goal. This work presents an integrated ontological framework for the semantic representation of terms and concepts (i.e., related to user needs and preferences (N&P) with respect to ICT use, as well as solutions, platforms and devices) that are required for addressing the universal accessibility in the scope of the Cloud4all project and the Global Public Inclusive Infrastructure (GPII). Cloud4all aims at advancing and building upon the concept of GPII through the development of the necessary tools and models for making ICT accessible for all by exploiting the cloud computing paradigm. The main goal of the proposed framework lays in the separation between generalized accessibility concepts, user interaction mechanisms and N&P with the particular details of different ICT artifacts. Thus, the framework aims at integrating concepts related with user N&P, as well as ICT solutions, platforms, devices and their customizable settings along with information concerning their vendors or implementers, in order to (a) offer the necessary expressiveness for defining/representing personal N&P across applications, platforms and devices, (b) link N&P with the conditions/context according to which these shall be applicable for (e.g., considering the user activity and the physical environment), (c) link interaction requirements (originated from user characteristics) with N&P and (d) support the Cloud4all matchmaking process through the mapping between N&P and application-specific settings based on semantic rules and automatic reasoning techniques.  相似文献   
9.
A reliability model for a health care domain based on requirement analysis at the early stage of design of regional health network (RHN) is introduced. RHNs are considered as systems supporting the services provided by health units, hospitals, and the regional authority. Reliability assessment in health care domain constitutes a field-of-quality assessment for RHN. A novel approach for predicting system reliability in the early stage of designing RHN systems is presented in this paper. The uppermost scope is to identify the critical processes of an RHN system prior to its implementation. In the methodology, Unified Modeling Language activity diagrams are used to identify megaprocesses at regional level and the customer behavior model graph (CBMG) to describe the states transitions of the processes. CBMG is annotated with: 1) the reliability of each component state and 2) the transition probabilities between states within the scope of the life cycle of the process. A stochastic reliability model (Markov model) is applied to predict the reliability of the business process as well as to identify the critical states and compare them with other processes to reveal the most critical ones. The ultimate benefit of the applied methodology is the design of more reliable components in an RHN system. The innovation of the approach of reliability modeling lies with the analysis of severity classes of failures and the application of stochastic modeling using discrete-time Markov chain in RHNs.  相似文献   
10.
Hybrid image segmentation using watersheds and fast region merging   总被引:62,自引:0,他引:62  
A hybrid multidimensional image segmentation algorithm is proposed, which combines edge and region-based techniques through the morphological algorithm of watersheds. An edge-preserving statistical noise reduction approach is used as a preprocessing stage in order to compute an accurate estimate of the image gradient. Then, an initial partitioning of the image into primitive regions is produced by applying the watershed transform on the image gradient magnitude. This initial segmentation is the input to a computationally efficient hierarchical (bottom-up) region merging process that produces the final segmentation. The latter process uses the region adjacency graph (RAG) representation of the image regions. At each step, the most similar pair of regions is determined (minimum cost RAG edge), the regions are merged and the RAG is updated. Traditionally, the above is implemented by storing all RAG edges in a priority queue. We propose a significantly faster algorithm, which additionally maintains the so-called nearest neighbor graph, due to which the priority queue size and processing time are drastically reduced. The final segmentation provides, due to the RAG, one-pixel wide, closed, and accurately localized contours/surfaces. Experimental results obtained with two-dimensional/three-dimensional (2-D/3-D) magnetic resonance images are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号