首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
电工技术   1篇
无线电   4篇
自动化技术   5篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有10条查询结果,搜索用时 78 毫秒
1
1.
This paper presents a recurrent fuzzy-neural filter for adaptive noise cancelation. The cancelation task is transformed to a system-identification problem, which is tackled by use of the dynamic neuron-based fuzzy neural network (DN-FNN). The fuzzy model is based on Takagi–Sugeno–Kang fuzzy rules, whose consequent parts consist of linear combinations of dynamic neurons. The orthogonal least squares method is employed to select the number of rules, along with the number and kind of dynamic neurons that participate in each rule. Extensive simulation results are given and performance comparison with a series of other dynamic fuzzy and neural models is conducted, underlining the effectiveness of the proposed filter and its superior performance over its competing rivals.  相似文献   
2.
In this work, a dynamic neurofuzzy system for forecasting outgoing telephone calls in a University Campus is proposed. The system comprises modified Takagi–Sugeno–Kang fuzzy rules, where the rules’ consequent parts are small neural networks with unit internal recurrence. The characteristics of the proposed forecaster, which is entitled recurrent neurofuzzy forecaster, are depicted via a comparative analysis with a series of well-known forecasting models.  相似文献   
3.
In this paper, the fast variation of rotor resistance due to winding temperature is shown. Thus, the rotor time constant in the vector controlled induction motor drives, in contrary to common belief, changes fast via temperature. Moreover, it depends on the motor slip. The slip dependency of rotor time constant is due to motor loss that is usually ignored. The iron and stray loss is introduced in the induction machine dynamic and static models and a new expression of the rotor time constant is derived, that contains the motor slip. Thus, the rotor time constant rapidly varies at load torque changes. A novel slip frequency calculation procedure is proposed that ensures the accurate and fast estimation of the valid machine rotor time constant. The above aspects have been verified by extensive simulation and experimental tests in a wide speed-torque range.  相似文献   
4.
A novel learning algorithm, the Recurrent Neural Network Constrained Optimization Method (RENNCOM) is suggested in this paper, for training block-diagonal recurrent neural networks. The training task is formulated as a constrained optimization problem, whose objective is twofold: (1) minimization of an error measure, leading to successful approximation of the input/output mapping and (2) optimization of an additional functional, the payoff function, which aims at ensuring network stability throughout the learning process. Having assured the network and training stability conditions, the payoff function is switched to an alternative form with the scope to accelerate learning. Simulation results on a benchmark identification problem demonstrate that, compared to other learning schemes with stabilizing attributes, the RENNCOM algorithm has enhanced qualities, including, improved speed of convergence, accuracy and robustness. The proposed algorithm is also applied to the problem of the analysis of lung sounds. Particularly, a filter based on block-diagonal recurrent neural networks is developed, trained with the RENNCOM method. Extensive experimental results are given and performance comparisons with a series of other models are conducted, underlining the effectiveness of the proposed filter.  相似文献   
5.
The synchronization, in the presence of time delay, of a nonlinear analog phase-locked loop (PLL) with an analog multiplier as phase detector (PD) and a lag filter is investigated. A nonlinear model for the voltage-controlled oscillator (VCO) is suggested and the sum frequency component at the PD output is taken into account. Simple expressions of the hold-in range of both the main synchronization and the synchronization at the third harmonic are derived. These expressions point out the effect of the time delay and the filter time constant on the hold-in range. Some conclusions of the presented analysis are not anticipated by the PLL classic theory and allow a better understanding of the loop behavior  相似文献   
6.
A recurrent fuzzy-neural model for dynamic system identification   总被引:14,自引:0,他引:14  
This paper presents a fuzzy modeling approach for identification of dynamic systems. In particular, a new fuzzy model, the Dynamic Fuzzy Neural Network (DFNN), consisting of recurrent TSK rules, is developed. The premise and defuzzification parts are static while the consequent parts of the fuzzy rules are recurrent neural networks with internal feedback and time delay synapses. The network is trained by means of a novel learning algorithm, named Dynamic-Fuzzy Neural Constrained Optimization Method (D-FUNCOM), based on the concept of constrained optimization. The proposed algorithm is general since it can be applied to locally as well as fully recurrent networks, regardless of their structures. An adaptation mechanism of the maximum parameter change is presented as well. The proposed dynamic model, equipped with the learning algorithm, is applied to several temporal problems, including modeling of a NARMA process and the noise cancellation problem. Performance comparisons are conducted with a series of static and dynamic systems and some existing recurrent fuzzy models. Simulation results show that DFNN compares favorably with its competing rivals and thus it can be considered for efficient system identification.  相似文献   
7.
A dynamic fuzzy filter is proposed that performs the task of separation of lung sounds obtained from patients with pulmonary pathology. The consequent parts of the fuzzy rules are dynamic, consisting of block-diagonal recurrent neural networks. The lung sound category of coarse crackles is examined, and a comparative analysis with other fuzzy and neural filters is conducted  相似文献   
8.
A recurrent fuzzy neural network with internal feedback is suggested in this paper. The network is entitled dynamic block-diagonal fuzzy neural network (DBD-FNN), and constitutes a generalized Takagi-Sugeno-Kang fuzzy system, where the consequent parts of the fuzzy rules are small Block-Diagonal Recurrent Neural Networks. The proposed model is applied to a benchmark identification problem, where a dynamic system is to be identified. Additionally, an application of the proposed model to the problem of the analysis of lung sounds is presented. Particularly, a filter based on the DBD-FNN is developed, trained with the RENNCOM method. Extensive experimental and simulation results are given and performance comparisons with a series of other models are conducted, highlighting the modeling characteristics of DBD-FNN as an identification tool and the effectiveness of the proposed separation filter.  相似文献   
9.
A fuzzy modeling method is developed in this paper for short term load forecasting. According to this method, identification of the premise part and consequent part is separately accomplished via the orthogonal least squares (OLS) technique. Particularly, the OLS is first employed to partition the input space and determine the number of fuzzy rules and the premise parameters. In the sequel, a second orthogonal estimator determines the input terms which should be included in the consequent part of each fuzzy rule and calculate its parameters. Input selection is automatically performed, given an input candidate set of arbitrary size, formulated by an expert. A satisfactory prediction performance is attained as shown in the test results, showing the effectiveness of the suggested method  相似文献   
10.
Pathological discontinuous adventitious sounds (DAS) are strongly related with the pulmonary dysfunction. Its clinical use for the interpretation of respiratory malfunction depends on their efficient and objective separation from vesicular sounds (VS). In this paper, an automated approach to the isolation of DAS from VS, based on their nonstationarity, is presented. The proposed scheme uses two fuzzy inference systems (FISs), operating in parallel, to perform the task of adaptive separation, resulting in the orthogonal least squares-based fuzzy filter (OLS-FF). By applying the OLS-FF to fine/coarse crackles and squawks, selected from three lung sound databases, the coherent structure of DAS is revealed and they are efficiently separated from VS. The important time domain DAS features, related to diagnostic information, are preserved and their true location and structural morphology are automatically identified. When compared to previous works, the OLS-FF performs quite similarly, but with significantly lower computational load, resulting in a faster real-time clinical screening of DAS.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号