首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
自动化技术   7篇
  2005年   1篇
  2003年   2篇
  2001年   3篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
给出了一种电机驱动机器手中非线性机电模型的模糊鲁棒闭环控制系统,此控制系统可处理非结构环境下的三个主要的智能机器人导航问题:自动化规划、快速连续导航中的避障、处理结构和(或)非结构不确定性。  相似文献   
2.
3.
A new robust neuro-fuzzy controller for autonomous and intelligent robot manipulators in dynamic and partially known environments containing moving obstacles is presented. The navigation is based on a fuzzy technique for the idea of artificial potential fields (APFs) using analytic harmonic functions. Unlike the fuzzy technique, the development of APFs is computationally intensive. A computationally efficient processing scheme for fuzzy navigation to reasoning about obstacle avoidance using APF is described, namely, the intelligent dynamic motion planning. An integration of a robust controller and a modified Elman neural networks (MENNs) approximation-based computed-torque controller is proposed to deal with unmodeled bounded disturbances and/or unstructured unmodeled dynamics of the robot arm. The MENN weights are tuned online, with no off-line learning phase required. The stability of the overall closed-loop system, composed by the nonlinear robot dynamics and the robust neuro-fuzzy controller, is guaranteed by the Lyapunov theory. The purpose of the robust neuro-fuzzy controller is to generate the commands for the servo-systems of the robot so it may choose its way to its goal autonomously, while reacting in real-time to unexpected events. The proposed scheme has been successfully tested. The controller also demonstrates remarkable performance in adaptation to changes in manipulator dynamics. Sensor-based motion control is an essential feature for dealing with model uncertainties and unexpected obstacles in real-time world systems.  相似文献   
4.
This paper focuses on autonomous motion control of a nonholonomic platform with a robotic arm, which is called mobile manipulator. It serves in transportation of loads in imperfectly known industrial environments with unknown dynamic obstacles. A union of both procedures is used to solve the general problems of collision-free motion. The problem of collision-free motion for mobile manipulators has been approached from two directions, Planning and Reactive Control. The dynamic path planning can be used to solve the problem of locomotion of mobile platform, and reactive approaches can be employed to solve the motion planning of the arm. The execution can generate the commands for the servo-systems of the robot so as to follow a given nominal trajectory while reacting in real-time to unexpected events. The execution can be designed as an Adaptive Fuzzy Neural Controller. In real world systems, sensor-based motion control becomes essential to deal with model uncertainties and unexpected obstacles.  相似文献   
5.
The work presented in this paper deals with the problem of autonomous and intelligent navigation of mobile manipulator, where the unavailability of a complete mathematical model of robot systems and uncertainties of sensor data make the used of approximate reasoning to the design of autonomous motion control very attractive.A modular fuzzy navigation method in changing and dynamic unstructured environments has been developed. For a manipulator arm, we apply the robust adaptive fuzzy reactive motion planning developed in [J.B. Mbede, X. Huang, M. Wang, Robust neuro-fuzzy sensor-based motion control among dynamic obstacles for robot manipulators, IEEE Transactions on Fuzzy Systems 11 (2) (2003) 249-261]. But for the vehicle platform, we combine the advantages of probabilistic roadmap as global planner and fuzzy reactive based on idea of elastic band. This fuzzy local planner based on a computational efficient processing scheme maintains a permanent flexible path between two nodes in network generated by a probabilistic roadmap approach. In order to consider the compatibility of stabilization, mobilization and manipulation, we add the input of system stability in vehicle fuzzy navigation so that the mobile manipulator can avoid stably unknown and/or dynamic obstacles. The purpose of an integration of robust controller and modified Elman neural network (MENN) is to deal with uncertainties, which can be translated in the output membership functions of fuzzy systems.  相似文献   
6.
An integration of fuzzy controller and modified Elman neural networks (NN) approximation-based computed-torque controller is proposed for motion control of autonomous manipulators in dynamic and partially known environments containing moving obstacles. The fuzzy controller is based on artificial potential fields using analytic harmonic functions, a navigation technique common used in robot control. The NN controller can deal with unmodeled bounded disturbances and/or unstructured unmodeled dynamics of the robot arm. The NN weights are tuned on-line, with no off-line learning phase required. The stability of the closed-loop system is guaranteed by the Lyapunov theory. The purpose of the controller, which is designed as a neuro-fuzzy controller, is to generate the commands for the servo-systems of the robot so it may choose its way to its goal autonomously, while reacting in real-time to unexpected events. The proposed scheme has been successfully tested. The controller also demonstrates remarkable performance in adaptation to changes in manipulator dynamics. Sensor-based motion control is an essential feature for dealing with model uncertainties and unexpected obstacles in real-time world systems.  相似文献   
7.

Volume Contents

Contents of Volume 27  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号