首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
自动化技术   2篇
  2012年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 578 毫秒
1
1.
Many patients with diabetes experience high variability in glucose concentrations that includes prolonged hyperglycemia or hypoglycemia. Models predicting a subject's future glucose concentrations can be used for preventing such conditions by providing early alarms. This paper presents a time-series model that captures dynamical changes in the glucose metabolism. Adaptive system identification is proposed to estimate model parameters which enable the adaptation of the model to inter-/intra-subject variation and glycemic disturbances. It consists of online parameter identification using the weighted recursive least squares method and a change detection strategy that monitors variation in model parameters. Univariate models developed from a subject's continuous glucose measurements are compared to multivariate models that are enhanced with continuous metabolic, physical activity and lifestyle information from a multi-sensor body monitor. A real life application for the proposed algorithm is demonstrated on early (30 min in advance) hypoglycemia detection.  相似文献   
2.
Current insulin therapy for patients with type 1 diabetes often results in high variability in blood glucose concentrations and may cause hyperglycemic/hypoglycemic episodes. Closing the glucose control loop with a fully automated electro-mechanical pancreas will improve the quality of life for insulin-dependent patients. An adaptive control algorithm is proposed to keep glucose concentrations within normoglycemic range and dynamically respond to glycemic challenges. A model-based control strategy is used to calculate the required insulin infusion rate, while the model parameters are recursively tuned. The algorithm handles delays associated with insulin absorption, time-lag between subcutaneous and blood glucose concentrations, and variations in inter/intra-subject glucose–insulin dynamics. Simulation results for simultaneous meal and physiological disturbances are demonstrated for subcutaneous insulin infusion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号