首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   8篇
  国内免费   1篇
电工技术   3篇
化学工业   20篇
机械仪表   3篇
建筑科学   10篇
能源动力   3篇
轻工业   8篇
水利工程   1篇
无线电   8篇
一般工业技术   25篇
冶金工业   12篇
原子能技术   1篇
自动化技术   21篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   10篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   8篇
  2013年   10篇
  2012年   10篇
  2011年   11篇
  2010年   8篇
  2009年   7篇
  2008年   9篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2002年   4篇
  1991年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
1.
The world is on the verge of a major antibiotic crisis as the emergence of resistant bacteria is increasing, and very few novel molecules have been discovered since the 1960s. In this context, scientists have been exploring alternatives to conventional antibiotics, such as ribosomally synthesized and post-translationally modified peptides (RiPPs). Interestingly, the highly potent in vitro antibacterial activity and safety of ruminococcin C1, a recently discovered RiPP belonging to the sactipeptide subclass, has been demonstrated. The present results show that ruminococcin C1 is efficient at curing infection and at protecting challenged mice from Clostridium perfringens with a lower dose than the conventional antibiotic vancomycin. Moreover, antimicrobial peptide (AMP) is also effective against this pathogen in the complex microbial community of the gut environment, with a selective impact on a few bacterial genera, while maintaining a global homeostasis of the microbiome. In addition, ruminococcin C1 exhibits other biological activities that could be beneficial for human health, as well as other fields of applications. Overall, this study, by using an in vivo infection approach, confirms the antimicrobial clinical potential and highlights the multiple functional properties of ruminococcin C1, thus extending its therapeutic interest.  相似文献   
2.
Ti3C2 MXenes with different halogen modifications are prepared rapidly and efficiently by microwave molten salt method, and the MXene surface functional group modification is successfully achieved to address the problems of low purity, complex functional groups, and uncontrollable energy band structure of MXenes obtained by traditional liquid phase etching. Among them, the modification of the iodine (I) functional group onto the surface of Ti3C2 changes the energy band structure and band gap, resulting in easier photoexcitation and more photogenerated carriers. The increased Fermi energy is closer to the conduction band, the decreased surface work function weakens the electron confinement ability. The photogenerated carriers can migrate to the surface of the material more easily with extended lifetime, so the activity of the catalyst is improved. Further, for gaseous monomeric mercury (Hg0) photo-oxidative removal, Ti3C2-I2 exhibits 85.5% efficiency of Hg0 photo-oxidative removal under visible light. Based on the experimental characterization and density functional theory calculations, a mechanism for the photo-oxidative removal of Hg° from Ti3C2-I2 MXene is proposed, which provides a valuable strategy for studying Ti3C2 MXenes in the field of photocatalysis.  相似文献   
3.
A hybrid of graphene and conducting polymer holds great potential as the active materials for high performance chemical sensor application. In this work, a thin hybrid film of reduced graphene oxide (RG-O) and poly(3,4-ethylenedioxythiophene) (PEDOT) was fabricated by means of vapor phase polymerization and explored as active material for chemical sensors. The chemical sensors based on hybrid film of RG-O and PEDOT are capable of detecting electrical signals caused by the absorption of trace levels of different analyte vapors with high sensitivity, selectivity and fast response.  相似文献   
4.
Scientific publications on ozone decay kinetics in water report very wide result variations, depending on a multiplicity of factors, such as ozone concentration, pH, temperature, alkalinity, fluid-dynamic conditions, presence of UV radiations, and concentration of organic and inorganic carbon. This paper intends to provide an engineering-oriented review that summarizes and compares the main results reported in the recent literature so that the condensed information can guide the reader in getting operational indications to assist applications and research.  相似文献   
5.
We present the different elaboration steps of a composite formed of carbon nanotubes (CNT) carpet embedded in an epoxy polymer. Detailed characterization at each step of the elaboration process is performed. The good alignment of CNT in as‐grown carpets is kept all along the elaboration process of the composite, as it is measured at both macro and microscopic scales by X‐ray scattering. We also ensured by X‐ray fluorescence measurements that the iron‐based catalyst particles used for the synthesis were removed from the carpet after a high temperature post‐annealing treatment. These measurements give valuable information for further applications involving unidirectional nanotube composites and membranes, where CNT alignment is a key parameter. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39730.  相似文献   
6.
7.
Credit scoring is the term used to describe methods utilized for classifying applicants for credit into classes of risk. This paper evaluates two induction approaches, rough sets and decision trees, as techniques for classifying credit (business) applicants. Inductive learning methods, like rough sets and decision trees, have a better knowledge representational structure than neural networks or statistical procedures because they can be used to derive production rules. If decision trees have already been used for credit granting, the rough sets approach is rarely utilized in this domain. In this paper, we use production rules obtained on a sample of 1102 business loans in order to compare the classification abilities of the two techniques. We show that decision trees obtain better results with 87.5% of good classifications with a pruned tree, against 76.7% for rough sets. However, decision trees make more type–II errors than rough sets, but fewer type–I errors.  相似文献   
8.
Recently, we described the use of a DNA aptamer as a new target-specific chiral stationary phase (CSP) for the separation of oligopeptide enantiomers (Michaud, M.; Jourdan, E.; Villet, A.; Ravel, A.; Grosset, C.; Peyrin, E. J. Am. Chem. Soc. 2003, 125, 8672). However, from a practical point of view, it was fundamental to extend the applicability of such target-specific aptamer CSP to the resolution of small (bioactive) molecule enantiomers. In this paper, immobilized DNA aptamers specifically selected against D-adenosine and L-tyrosinamide were used to resolve the enantiomers by HPLC, using microbore columns. At 20 degrees C, the adenosine enantioseparation was similar to that classically reported with imprinted CSPs (approximately 3.5) while a very high enantioselectivity was observed for the tyrosinamide enantiomers (the nontarget enantiomer was essentially nonretained on the CSP). The influence of temperature on solute binding and chiral discrimination was analyzed. The binding enthalpic contributions were determined from linear van't Hoff plots. Very large DeltaH values were obtained for the target enantiomers (-71.4 +/- 0.7 kJ/mol for D-adenosine and -139.4 +/- 2.0 kJ/mol for L-tyrosinamide). Such values were consistent with the formation of a tight complex between these analytes and the aptamer CSPs. This work demonstrates that target-specific aptamer CSPs constitute a powerful tool for the resolution of small (bioactive) molecule enantiomers.  相似文献   
9.
10.
Over the last two decades, experimental data of the nature of species evolution profiles and ignition delays from rapid compression machines (RCMs) has been used to develop and validate chemical kinetic mechanisms at low-to-intermediate temperatures and elevated pressures. A significant portion of this overall dataset is from RCMs that had not employed a creviced piston to contain the roll-up vortex. The detrimental influence of the roll-up vortex and the thermokinetic interactions due to the resulting temperature non-homogeneity during the negative temperature coefficient (ntc) regime have been documented in the literature. However, the adequacy of the homogeneous modeling of RCMs without creviced pistons during reactive conditions has not been investigated. In this work, computational fluid dynamics simulations of an RCM without a creviced piston are conducted for autoignition of n-heptane over the entire ntc regime over a range compressed pressures from 5 to 18 bar. The results from the CFD simulations highlight the non-homogeneity of autoignition and reveal significant quantitative discrepancy in comparison to homogeneous modeling, particularly for the hot ignition delay in the ntc regime. Specifically, the roll-up vortex induced temperature non-homogeneity leads to diminution of the ntc behavior. The experimental data from RCMs without creviced piston needs to be taken with caution for quantitative validation and refinement of kinetic mechanism, particularly at conditions when ntc behavior is highly pronounced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号