首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   13篇
电工技术   3篇
化学工业   6篇
金属工艺   1篇
机械仪表   1篇
建筑科学   2篇
能源动力   5篇
轻工业   2篇
无线电   26篇
一般工业技术   19篇
原子能技术   1篇
自动化技术   8篇
  2023年   7篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   9篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   9篇
  2011年   7篇
  2010年   1篇
  2009年   6篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2000年   1篇
  1998年   2篇
  1993年   1篇
排序方式: 共有74条查询结果,搜索用时 46 毫秒
1.
Abstract— A full‐color 12.1‐in.WXGA active‐matrix organic‐light‐emitting‐diode (AMOLED) display was, for the first time, demonstrated using indium‐gallium‐zinc oxide (IGZO) thin‐film transistors (TFTs) as an active‐matrix backplane. It was found that the fabricated AMOLED display did not suffer from the well‐known pixel non‐uniformity in luminance, even though the simple structure consisting of two transistors and one capacitor was adopted as the unit pixel circuit, which was attributed to the amorphous nature of IGZO semiconductors. The n‐channel a‐IGZO TFTs exhibited a field‐effect mobility of 17 cm2/V‐sec, threshold voltage of 1.1 V, on/off ratio >109, and subthreshold gate swing of 0.28 V/dec. The AMOLED display with a‐IGZO TFT array is promising for large‐sized applications such as notebook PCs and HDTVs because the a‐IGZO semiconductor can be deposited on large glass substrates (larger than Gen 7) using the conventional sputtering system.  相似文献   
2.
In this article, the method for increasing dynamic stability of quadruped robot is proposed. Previous researches on dynamic walking of quadruped robots have used only walking pattern called central pattern generator (CPG). In this research, different from walking generation with only CPG, a instinctive stability measure called landing accordance ratio, is proposed and used for increasing dynamic stability. In addition, dynamic balance control and control to adjust walking trajectory for increasing dynamic stability measure is also proposed. Proposed methods are verified with dynamic simulation and a large number of experiments with quadruped robot platform.  相似文献   
3.
4.
As the thickness of crystalline silicon solar cells decreases, light loss cannot be avoided due to the absorption limit in long wavelength light. Internal rear side reflection can be enhanced by polishing the rear surface. The rear polishing processes are performed before the texturing and before and after doping the emitter layer to optimize the solar cell fabrication process sequences. All cells made by rear surface polishing showed improved light trapping in long wavelength region (900-1100 nm) compared to that in the conventional cells. However, silicon solar cells fabricated by rear polishing before and after doping have similar (35.5 mA/cm2) or lower (35.26 mA/cm2) short circuit current density compared to the cells produced by the conventional process (35.59 mA/cm2) due to pore damage to the anti-reflection layer and the surface of the emitter layer during rear polishing. This surface damage was effectively prevented adapting the rear surface polishing before the front surface texturing, which led to increasing the current density from 35.59 to 36.29 mA/cm2.  相似文献   
5.
6.
A compact and low power 12-bit 300 MS/s current steering CMOS D/A converter is presented. The architecture of the D/A converter is based on the current steering 6 + 6 segmented type with a laminated current cell relocation technique. In order to improve the linearity and glitch noise, a high output impedance analog current cell is designed. Furthermore, for the purpose of reducing the chip area and power dissipation, a noble merged switching logic and a compact layout technique are proposed. To verify its performance, the chip was fabricated with 0.13 μm thick-gate 1-poly 6-metal N-well Samsung CMOS technology. The effective chip area is 0.26 mm2 (510 × 510 μm) with a power consumption of 100 mW. The measured INL and DNL are within ±3LSB and ±1LSB, respectively. The measured SFDR is about 70 dB, when the input frequency is 1 MHz at a clock frequency of 300 MHz.  相似文献   
7.
Large dye-sensitized solar cells (DSCs) are usually fabricated as module types instead of single cell types, because the overall efficiency of an area-expanded single DSC is decreased by its large surface resistances and low fill factor (FF). The general DSC module designs are the parallel grid, series interconnect, and series monolithic types. The W-series interconnect type of module has some advantages, such as its easy fabrication and simple structure. Moreover, it also avoids the reduction in the FF. However, it has an efficiency imbalance between the single cells, because of the discrepancy in their luminous intensity. Therefore, the fabrication of the W-series interconnect type of module will be cost-effective only if the problem of its efficiency imbalance is solved. In this study, the thickness of the Pt layer, which has a very high reflection rate, and that of the electrolyte layer are minimized and the transmitted light is reflected by a metallic thin film in order to increase the number of photons absorbed by the dye molecules in the module. As a result, the performance of the efficiency-balanced W-module is improved by approximately 1% as compared to that of the conventional module.  相似文献   
8.
A clock feedthrough reduction circuit useful for switched-current systems is proposed. This circuit adopts the concept of current cancellation. It is a signal-dependent clock feedthrough reduction circuit. To verify the usefulness of the proposed circuit, a test pattern was fabricated using 1.2 μm CMOS process. The simulation and the experimental results of the proposed circuit reveal a reduction of clock feedthrough errors in comparison with conventional circuits. The circuit based on this concept also permits a decrease in area of about 20%  相似文献   
9.
The effect of hydrogen capping of SiN(Si-rich)/SiN(N-rich) stacks for n-type c-Si solar cells was investigated. Use of a passivation layer consisting of Si-rich SiN with a refractive index (n) of 2.7 and N-rich SiN with a refractive index of 2.1 improved the thermal stability. A single SiN passivation layer with a refractive index of 2.05 resulted in an initial lifetime of 200 μs whereas the layer with a refractive index of 2.7 resulted in a high initial lifetime of 2 ms, but the layer degraded rapidly after firing. A stacked passivation layer with refractive indices of 2.1 and 2.7 had a stable lifetime of 1.5 ms with an implied open-circuit voltage (iV oc) of 720 mV after firing. The thermally stable passivation mechanism with changing amounts of Si–N and Si–H bonding was analyzed by Fourier-transform infrared (FTIR) spectroscopy. Incorporation of the SiN x stack layer (2.7 + 2.1) into the passivated rear of n-type Cz silicon screen-printed solar cells resulted in energy conversion efficiency of 19.69%. Improved internal quantum efficiency in the long-wavelength range above 900 nm, with V oc of 630 mV, is mainly because of superior passivation of the rear surface compared with conventional solar cells.  相似文献   
10.
A highly efficient single-input, dual-output AC–DC converter for wireless power transfer in implantable devices is implemented using the 0.18-µm CMOS process. The proposed AC–DC converter, consisting of three rectifiers with cross-coupled NMOS transistors and comparator-driven PMOS transistors, achieves up to 79.5% power conversion efficiency at 13.56 MHz operation frequency in order to provide dual outputs of 1.2 V and 2.2 V DC voltages along with 6.2 mA and 22.6 mA of current, respectively, to the implant device from a single RF input. The designed IC consumes a core die area of 0.18 mm2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号