首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9453篇
  免费   845篇
  国内免费   83篇
电工技术   114篇
综合类   46篇
化学工业   2392篇
金属工艺   207篇
机械仪表   477篇
建筑科学   266篇
矿业工程   19篇
能源动力   552篇
轻工业   1046篇
水利工程   162篇
石油天然气   94篇
武器工业   4篇
无线电   1047篇
一般工业技术   1915篇
冶金工业   218篇
原子能技术   84篇
自动化技术   1738篇
  2024年   53篇
  2023年   266篇
  2022年   568篇
  2021年   963篇
  2020年   689篇
  2019年   796篇
  2018年   836篇
  2017年   709篇
  2016年   679篇
  2015年   420篇
  2014年   607篇
  2013年   890篇
  2012年   587篇
  2011年   629篇
  2010年   378篇
  2009年   351篇
  2008年   204篇
  2007年   185篇
  2006年   95篇
  2005年   56篇
  2004年   63篇
  2003年   45篇
  2002年   36篇
  2001年   19篇
  2000年   23篇
  1999年   31篇
  1998年   22篇
  1997年   15篇
  1996年   17篇
  1995年   28篇
  1994年   10篇
  1993年   16篇
  1992年   12篇
  1991年   11篇
  1990年   5篇
  1989年   9篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   9篇
  1983年   2篇
  1982年   9篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1967年   1篇
  1961年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Journal of Materials Science - Chitosan is one of the natural cationic polymers with unique properties such as non-toxicity, biodegradability, biocompatibility, environmentally friendly that has...  相似文献   
2.
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.  相似文献   
3.
4.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
5.
Ferrites are an important group of magnetic materials which are used as absorbers. The incorporation of ferrite and conducting polymer achieves great enhancement in microwave absorption properties. The nanocomposites of hexagonal ferrites embedded by conducting polymers such as polypyrrole, polyaniline and polythiophene (PTH) have been paid much attention. In the present study, strontium hexagonal ferrite doped by Zr and Zn with the final formula of SrFe12-x(ZrZn)0.5xO19 considering x = 0.9 and embedded by PTH was produced to achieve a nanocomposite with the highest microwave absorbing ability. In this study, after synthesis of SrFe12O19(ZrZn)0.5xO19 and PTH, the nanocomposite was prepared by in situ polymerization. Wrapping the ferrite particles and PTH chains could form nanocomposite properly, and therefore acceptable interactions were observable between SrFe12-x(ZrZn)0.5xO19ferrite particles and PTH polymer chains in the composites. Assessing the X-ray diffraction (XRD) patterns of SrFe12-x(ZrZn)0.5xO19, PTH, and PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite indicated that the PTH characteristic peak shifts slightly and its peak intensity reduces, which may be attribute to the coating of PTH polymer chains onto SrFe12-x(ZrZn)0.5xO19 particles. We revealed also lower magnetic properties in the obtained nanocomposite. The morphological assessment also suggested that PTH could effectively coat the SrFe12-x(ZrZn)0.5xO19 particles. The synergistic effect of SrFe12-x(ZrZn)0.5xO19 particle plus PTH leads to microwave absorption percentage higher than 95% by PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite. Overall, nanocomposite creating by coupling interaction between SrFe12-x(ZrZn)0.5xO19 particles (x = 0.9) and PTH can effectively lead to achieve the highest rate of absorption of electromagnetic waves.  相似文献   
6.
The spongy nickel oxide (SNO) was synthesized the solution combustion method. The SNO was selected as a promoter to boost the catalytic activity of nanoraspberry-like palladium (NRPd) toward electrooxidation of five light fuels (LFs): methanol, ethanol, formaldehyde, formic acid, and ethylene glycol. The X-ray powder diffraction, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy, and field emission scanning electron microscope techniques were used for the materials characterization. In comparison with nonpromoted Pd, the NRPd-SNO electrocatalyst shown an excellent efficiency in parameters like the electrochemical active surface area and anti-CO poisoning behavior. The turnover data and the parameters, including reaction order, activation energy, and the coefficients of electron transfer and diffusion, were evaluated for the each process of LFs electrooxidation. The outcome for NRPd-SNO activity toward LFs electrooxidation was compared to some reported electrodes. The SNO increases the removal of intermediates created in the oxidation of LFs that can poison the surface of palladium catalyst. This is due to the presence of the lattice oxygens in SNO structure and Ni switching between its high and low valances. The compatibility of the adsorption process of LFs on the surface of the NRPd-SNO catalyst with different isotherms was determined by studying the Tafel polarization and calculating the surface coverage.  相似文献   
7.
This work evaluated the synergistic effects of combined high-intensity ultrasound (HIU) with β-cyclodextrin (β-CD) treatments on inhibiting browning of apple juice and explored the mechanism through simulation system. The combined treatment of 300 W HIU with 0.006 g mL−1 β-CD had a synergistic impact on maintaining juice colour, resulting in a 39.06% reduction in browning degree, only a 36.64% decrease in total phenolic content, and a 17.82% reduction in PPO activity. The inhibition of enzymatic browning in simulated system revealed that HIU suppressed the enzyme (Polyphenol oxidase, PPO) and β-CD inhibited enzyme (PPO) and embedded substrate (polyphenol). The results of spectroscopic analysis showed that the particle-size distribution of PPO narrowed, the content of α-helix in the secondary structure increased, the fluorescence intensity increased, and the maximum wavelength was red-shifted after HIU and β-CD treatment. Changes in structure could further result in PPO activity loss. Hence, the combined treatment could synthetically alleviate the browning of apple juice.  相似文献   
8.
Photocatalytic H2 generation using semiconductor photocatalysts is considered as a cost-effective and eco-friendly technology for solar to energy conversion; however, the present photocatalysts have been recognized to depict low efficiency. Currently, porous coordination polymers known as metal-organic frameworks (MOFs) constituting flexible and modifiable porous structure and having excess active sites are considered to be appropriate for photocatalytic H2 production. This review highlights current progress in structural development of MOF materials along with modification strategies for enhanced photoactivity. Initially, the review discusses the photocatalytic H2 production mechanism with the concepts of thermodynamics and mass transfer with particular focus on MOFs. Elaboration of the structural categories of MOFs into Type I, Type II, Type III and classification of MOFs for H2 generation into transition metal based, post-transition metal based, noble-metal based and hetero-metal based has been systematically discussed. The review also critically deliberate various modification approaches of band engineering, improvement of charge separation, efficient irradiation utilization and overall efficiency of MOFs including metal modification, heterojunction formation, Z-scheme formation, by introducing electron mediator, and dye based composites. Also, the MOF synthesized derivatives for photocatalytic H2 generation are elaborated. Finally, future perspectives of MOFs for H2 generation and approaches for efficiency improvement have been suggested.  相似文献   
9.
Wireless Personal Communications - Underwater Wireless Sensor Networks (UWSNs) are playing a vital role in exploring the unseen underwater (UW) natural resources. However, performance evaluation of...  相似文献   
10.
The aim of this study was to develop high dielectric constant flexible polymers with a highly efficient and cost‐effective approach using acrylonitrile butadiene rubber (NBR) as the polymer matrix and barium titanate (BT) as the high dielectric constant filler. The BT powder was synthesized with a solid‐state reaction and was characterized using a particle size analyzer, XRD, SEM and Fourier transform infrared spectroscopy. NBR/BT composites were fabricated using an internal mixer with various BT loadings up to 160 phr. The influence of BT loading on the cure characteristics and mechanical, dynamic mechanical, thermal, dielectric and morphological properties was determined. The incorporation of BT in the NBR matrix shortened scorch time and increased delta torque. The mechanical properties, thermal stability and dielectric constant were greatly improved and increased with BT loading. The results suggest that the reinforcement effect was achieved due to strong hydrogen bonding or polar–polar interactions between NBR matrix and BT filler. This is further corroborated by the good dispersion of BT filler in the NBR matrix observed with SEM imaging. These findings can be applied to produce high‐performance dielectric elastomers. © 2020 Society of Industrial Chemistry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号