首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
建筑科学   3篇
一般工业技术   8篇
自动化技术   9篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2018年   2篇
  2015年   3篇
  2013年   1篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.

A hybrid analytical-intelligent approach is proposed for fuzzy reliability analysis of the composite beams reinforced by zinc oxide (ZnO) nanoparticle. The fuzzy reliability index corresponding to buckling failure mode of nanocomposite beam under thickness-direction external voltage is computed based on three-levels: (1) fuzzy analysis, (2) reliability analysis and (3) analytical buckling analysis. In fuzzy analysis level, an improved gravitational search algorithm has been applied to determine uncertainty interval for membership levels of reliability index. The adaptive formulation with a dynamical self-adjusting process is used for reliability analysis level based on conjugate first-order reliability method (FORM). The self-adjusting term in conjugate sensitivity vector is used to satisfy the sufficient descent condition for controlling instability of FORM formula while the proposed conjugate scalar factor is computed less than the original conjugate FORM, thus it may be provided with the efficient results for the convex problem. The new and previous sensitivity vectors obtained by conjugate and steepest descent vectors dynamically adjusted the proposed conjugate factor. In the buckling analysis level, an exponential theory in conjunction with the method of energy is utilized. Fuzzy random variables including applied voltage, the volume fraction of ZnO, thickness of beam, spring constant and shear constant of the foundation are considered in studied nanocomposite beam. Survey results indicated that the proposed method can provide stable and acceptable fuzzy membership functions for parametric study. Moreover, the ratio of length to thickness and spring constant of foundation are the more sensitive parameters which affect fuzzy reliability index significantly.

  相似文献   
2.
A node-based smoothed finite element method (NS-FEM) was recently proposed for the solid mechanics problems. In the NS-FEM, the system stiffness matrix is computed using the smoothed strains over the smoothing domains associated with nodes of element mesh. In this paper, the NS-FEM is further extended to more complicated visco-elastoplastic analyses of 2D and 3D solids using triangular and tetrahedral meshes, respectively. The material behavior includes perfect visco-elastoplasticity and visco-elastoplasticity with isotropic hardening and linear kinematic hardening. A dual formulation for the NS-FEM with displacements and stresses as the main variables is performed. The von-Mises yield function and the Prandtl–Reuss flow rule are used. In the numerical procedure, however, the stress variables are eliminated and the problem becomes only displacement-dependent. The numerical results show that the NS-FEM has higher computational cost than the FEM. However the NS-FEM is much more accurate than the FEM, and hence the NS-FEM is more efficient than the FEM. It is also observed from the numerical results that the NS-FEM possesses the upper bound property which is very meaningful for the visco-elastoplastic analyses which almost have not got the analytical solutions. This suggests that we can use two models, NS-FEM and FEM, to bound the solution, and can even estimate the global relative error of numerical solutions.  相似文献   
3.

Structural optimization with frequency constraints is well known as a highly nonlinear and complex optimization problem with many local optimum solutions. Therefore, to solve such problems effectively, designers need to use adequate optimization methods which can make a good balance between the computational cost and the quality of solutions. In this work, a novel differential evolution (DE) is proposed to solve the shape and size optimization problems for truss structures with frequency constraints. The proposed method, called ReDE, is a new version of the DE algorithm with two improvements. Firstly, the roulette wheel selection is employed to choose members for the mutation phase instead of random selection as in the conventional DE. Secondly, an elitist selection technique is applied to the selection phase instead of basic selection to improve the convergence speed of the method. The efficiency and reliability of the proposed method are demonstrated through five numerical examples. Numerical results reveal that the proposed algorithm outperforms many optimization methods in the literature.

  相似文献   
4.
Neural Computing and Applications - Suspension bridges are critical components of transport infrastructure around the world. Therefore, their operating conditions should be effectively monitored to...  相似文献   
5.

Epistemic uncertainties are critical for reliable design of corroded pipes made of high-strength grade steel. In this work, corrosion defects geometries and operating pressure are provided as the epistemic uncertainties in reliability analysis. A framework of an iterative approach-based bi-loop is presented for fuzzy reliability analysis (FRA) of corroded pipelines to evaluate the fuzzy reliability index-based various fuzzy-random variables (FRVs). In the inner loop, the conjugate first-order reliability method using adaptive finite-step size is applied for carried out the reliability analysis. The outer loop is structured based on the fuzzy analysis corresponding to a modified particle swarm optimization as an intelligent tool. The adaptive conjugate fine step size is dynamically computed to adjust the conjugate sensitivity vector in the reliability loop. The sufficient descent condition is satisfied based on three-term conjugate first-order reliability method. The performance function of corroded pipelines is defined based on average shear stress yield-based plastic flow theory, remaining strength factor, and operating pressure. Two applicable examples as corroded pipelines made from X100 high-strength steel are given to illustrate the effects of epistemic uncertainties under corrosion defects. Investigation the results has shown that modeling of epistemic uncertainty in the reliability analysis of high-grade steel pipelines could result more reasonable reliability indexes. In addition, results indicate that FRVs have significant influence on fuzzy reliability index calculations, especially corrosion defect depth and operating pressure (as FRVs). The sensitivity measure of FRA demonstrated that fuzzy reliability index of corroded X100 steel pipelines is more sensitive to the FRVs means.

  相似文献   
6.

The stable convergence and efficiency of reliability-based design optimization (RBDO) using performance measure approach (PMA) are the major issue to develop the reliability methods based on modified chaos control (MCC), hybrid chaos control (HCC) and finite-step length adjustment (FSL). However, these methods may be inefficient for RBDO problems with convex and concave probabilistic constraints. In this paper, an adaptive modified chaos control (AMC) is proposed to provide the robust and efficient results in RBDO. The proposed AMC is adjusted using dynamical chaos control factor, which is extracted using sufficient descent condition for PMA. Using sufficient criterion, the proposed AMC is adaptively combined with advanced mean value (AMV) to improve the performance of PMA, named as hybrid adaptive modified chaos control (HAMC). Considering the robustness and efficiency, the proposed HAMC is compared with several existing reliability methods by three nonlinear structural/mathematical performance functions and two RBDO problems. The results indicate that the proposed HAMC with sufficient descent condition provides superior convergences in terms of both robustness and efficiency, compared to existing PMA methods using AMV, MCC, HCC and FSL.

  相似文献   
7.
An edge-based smoothed finite element method (ES-FEM) for static, free vibration and buckling analyses of Reissner–Mindlin plates using 3-node triangular elements is studied in this paper. The calculation of the system stiffness matrix is performed by using the strain smoothing technique over the smoothing domains associated with edges of elements. In order to avoid the transverse shear locking and to improve the accuracy of the present formulation, the ES-FEM is incorporated with the discrete shear gap (DSG) method together with a stabilization technique to give a so-called edge-based smoothed stabilized discrete shear gap method (ES-DSG). The numerical examples demonstrated that the present ES-DSG method is free of shear locking and achieves the high accuracy compared to the exact solutions and others existing elements in the literature.  相似文献   
8.
International Journal of Mechanics and Materials in Design - A multi-objective optimization approach for optimal smart damping treatment of functionally graded magneto-electro-elastic plate (FGMEE)...  相似文献   
9.
Abstract

The paper deals with the nonlinear buckling analysis of imperfect cylindrical shells made of porous metal foam subjected to axial compression. For the metal foam shells, porosities are dispersed by uniform, symmetric, and asymmetric distributions in the thickness direction. Using Donnell shell theory and von-Karman nonlinear kinematics, nonlinear equilibrium equations are derived. The critical buckling load and buckling equilibrium curves for both perfect and imperfect shells are solved by using the Galerkin's procedure. A comprehensive investigation into the influence of porosity coefficient, imperfections, porosity distribution, and geometry on the buckling behaviors of the cylindrical shell is performed.  相似文献   
10.
An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap (DSG) technique using triangular meshes (ES-DSG) was recently proposed to enhance the accuracy of the existing FEM with the DSG for analysis of isotropic Reissner/Mindlin plates. In this paper, the ES-DSG is further formulated for static, free vibration and buckling analyses of functionally graded material (FGM) plates. The thermal and mechanical properties of FGM plates are assumed to vary across the thickness of the plate by a simple power rule of the volume fractions of the constituents. In the ES-DSG, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains associated with the edges of the elements. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to demonstrate the performance of the present formulation for FGM plates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号