首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   5篇
电工技术   1篇
化学工业   3篇
建筑科学   14篇
矿业工程   1篇
无线电   6篇
一般工业技术   5篇
冶金工业   3篇
自动化技术   8篇
  2022年   1篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2013年   2篇
  2012年   2篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1972年   1篇
排序方式: 共有41条查询结果,搜索用时 62 毫秒
1.
Low-temperature wafer-level transfer bonding   总被引:2,自引:0,他引:2  
In this paper, we present a new wafer-level transfer bonding technology. The technology can be used to transfer devices or films from one substrate wafer (sacrificial device wafer) to another substrate wafer (target wafer). The transfer bonding technology includes only low-temperature processes; thus, it is compatible with integrated circuits. The process flow consists of low-temperature adhesive bonding followed by sacrificially thinning of the device wafer. The transferred devices/films can be electrically interconnected to the target wafer (e.g., a CMOS wafer) if required. We present three example devices for which we have used the transfer bonding technology. The examples include two polycrystalline silicon structures and a test device for temperature coefficient of resistance measurements of thin-film materials. One of the main advantages of the new transfer bonding technology is that transducers and integrated circuits can be independently processed and optimized on different wafers before integrating the transducers on the integrated circuit wafer. Thus, the transducers can be made of, e.g., monocrystalline silicon or other high-temperature annealed, high-performance materials. Wafer-level transfer bonding can be a competitive alternative to flip-chip bonding, especially for thin-film devices with small feature sizes and when small electrical interconnections (<3×3 μm2) between the devices and the target wafer are required  相似文献   
2.
A Brief History of Software Engineering   总被引:1,自引:0,他引:1  
This personal perspective on the art of programming begins with a look at the state of programming from about 1960, and it follows programming's development through the present day. The article examines key contributions to the field of software engineering and identifies major obstacles, which persist even today.  相似文献   
3.
The ring-on-ring bending principle allows the fabrication of simple, low-cost thick-film piezoresistive sensors for compressive forces in the 10–400 N range. However, some imperfections are encountered in its basic embodiment, such as relatively high force-signal hysteresis and nonrepeatability (up to ca. 5%). These shortcomings were studied in this work, and major improvements have been achieved. Hysteresis was found to be mainly due to friction at the outer support ring, and was considerably reduced by inserting a compliant silicone glue ring. The same glue ring was used to permanently bond the sensor to a rigid base, thereby giving well-defined and constant boundary conditions and also considerably improving the repeatability of the sensitivity. Overall, hysteresis and repeatability error were reduced down to a level of ca. 1%.  相似文献   
4.
5.
Here, the use of low‐energy metal ion implantation by filtered cathodic vacuum arc to create highly deformable electrodes on polydimethylsiloxane (PDMS) membranes is reported. Implantation leads to the creation of nanometer‐size clusters in the first 50 nm below the surface. When the elastomer is stretched, these small clusters can move relative to one another, maintaining electrical conduction at strains of up to 175%. Sheet resistance versus ion dose, resistance versus strain, time stability of the resistance, and the impact of implantation on the elastomer's Young's modulus are investigated for gold, palladium, and titanium implantations. Of the three tested metals, gold has the best performance, combining low and stable surface resistance, very high strain capabilities before loss of electrical conduction, and low impact on the Young's modulus of the PDMS membrane. These electrodes are cyclically strained to 30% for more than 105 cycles and remain conductive. In contrast, sputtered or evaporate metals films cease to conduct at strains of order 3%. Additionally, metal ion implantation allows for creating semi‐transparent electrodes. The optical transmission through 25‐µm‐thick PDMS membranes decreases from 90% to 60% for Pd implantations at doses used to make stretchable electrodes. The implantation technique presented here allows the rapid production of reliable stretchable electrodes for a number of applications, including dielectric elastomer actuators and foldable or rollable electronics.  相似文献   
6.
7.
8.
In this paper, we present CMOS compatible fabrication of monocrystalline silicon micromirror arrays using membrane transfer bonding. To fabricate the micromirrors, a thin monocrystalline silicon device layer is transferred from a standard silicon-on-insulator (SOI) wafer to a target wafer (e.g., a CMOS wafer) using low-temperature adhesive wafer bonding. In this way, very flat, uniform and low-stress micromirror membranes made of monocrystalline silicon can be directly fabricated on top of CMOS circuits. The mirror fabrication does not contain any bond alignment between the wafers, thus, the mirror dimensions and alignment accuracies are only limited by the photolithographic steps. Micromirror arrays with 4/spl times/4 pixels and a pitch size of 16 /spl mu/m/spl times/16 /spl mu/m have been fabricated. The monocrystalline silicon micromirrors are 0.34 /spl mu/m thick and have feature sizes as small as 0.6 /spl mu/m. The distance between the addressing electrodes and the mirror membranes is 0.8 /spl mu/m. Torsional micromirror arrays are used as spatial light modulators, and have potential applications in projection display systems, pattern generators for maskless lithography systems, optical spectroscopy, and optical communication systems. In principle, the membrane transfer bonding technique can be applied for integration of CMOS circuits with any type of transducer that consists of membranes and that benefits from the use of high temperature annealed or monocrystalline materials. These types of devices include thermal infrared detectors, RF-MEMS devices, tuneable vertical cavity surface emitting lasers (VCSEL) and other optical transducers.  相似文献   
9.
(1) Aim: To investigate the effect of synthetic bone substitutes, α-tricalcium phosphate (α-TCP) or bi-layered biphasic calcium-phosphate (BBCP) combined with deproteinized bovine bone mineral (DBBM), on bone formation. (2) Methods: Thirty critical size defects were randomly treated with the following five different treatment modalities: (1) negative control (NC, empty), (2) DBBM, (3) α-TCP + DBBM (1:1), (4) BBCP 3%HA/97%α-TCP + DBBM (1:1), and (5) BBCP 6%HA/94%α-TCP + DBBM (1:1). The samples, at four weeks post-surgery, were investigated by micro-CT and histological analysis. (3) Results: A similar level of new bone formation was demonstrated in the DBBM with α-TCP bone substitute groups when compared to the negative control by histomorphometry. DBBM alone showed significantly lower new bone area than the negative control (p = 0.0252). In contrast to DBBM, the micro-CT analysis revealed resorption of the α-TCP + DBBM, BBCP 3%HA/97%α-TCP + DBBM and BBCP 6%HA/94%α-TCP + DBBM, as evidenced by a decrease of material density (p = 0.0083, p = 0.0050 and p = 0.0191, respectively), without changing their volume. (4) Conclusions: New bone formation was evident in all defects augmented with biomaterials, proving the osteoconductive properties of the tested material combinations. There was little impact of the HA coating degree on α-TCP in bone augmentation potential and material resorption for four weeks when mixed with DBBM.  相似文献   
10.
We report on the characterization, active tuning, and modeling of the first mode resonance frequency of dielectric electroactive polymer (DEAP) membranes. Unlike other resonance frequency tuning techniques, the tuning procedure presented here requires no external actuators or variable elements. Compliant electrodes were sputtered or implanted on both sides of 20-35-mum-thick and 2-4-mm-diameter polydimethylsiloxane membranes. The electrostatic force from an applied voltage adds compressive stress to the membrane, effectively softening the device and reducing its resonance frequency, in principle to zero at the buckling threshold. A reduction in resonance frequency up to 77% (limited by dielectric breakdown) from the initial value of 1620 Hz was observed at 1800 V for ion-implanted membranes. Excellent agreement was found between our measurements and an analytical model we developed based on the Rayleigh-Ritz theory. This model is more accurate in the tensile domain than the existing model for thick plates applied to DEAPs. By varying the resonance frequency of the membranes (and, hence, their compliance), they can be used as frequency-tunable attenuators. The same technology could also allow the fine-tuning of the resonance frequencies in the megahertz range of devices made from much stiffer polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号