首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
机械仪表   1篇
自动化技术   6篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 656 毫秒
1
1.
Applied Intelligence - High utility itemset mining is a popular pattern mining task, which aims at revealing all sets of items that yield a high profit in a transaction database. Although this task...  相似文献   
2.
For a set TT of nn points (terminals) in the plane, a Manhattan network   on TT is a network N(T)=(V,E)N(T)=(V,E) with the property that its edges are horizontal or vertical segments connecting points in V⊇TVT and for every pair of terminals, the network N(T)N(T) contains a shortest l1l1-path between them. A minimum Manhattan network   on TT is a Manhattan network of minimum possible length. The problem of finding minimum Manhattan networks has been introduced by Gudmundsson, Levcopoulos, and Narasimhan [J. Gudmundsson, C. Levcopoulos, G. Narasimhan, Approximating a minimum Manhattan network, Nordic Journal of Computing 8 (2001) 219–232. Proc. APPROX’99, 1999, pp. 28–37] and its complexity status is unknown. Several approximation algorithms (with factors 8, 4, and 3) have been proposed; recently Kato, Imai, and Asano [R. Kato, K. Imai, T. Asano, An improved algorithm for the minimum Manhattan network problem, ISAAC’02, in: LNCS, vol. 2518, 2002, pp. 344–356] have given a factor 2-approximation algorithm, however their correctness proof is incomplete. In this paper, we propose a rounding 2-approximation algorithm based on an LP-formulation of the minimum Manhattan network problem.  相似文献   
3.
Manufacturers need to continuously improve productivity and reduce the most disadvantages. In the current work, an experimental study has been carried out in order to evaluate the influence of different cutting parameters on the various machining factors such as surface roughness, cutting force, cutting power, metal removal rate, and tool wear during turning of X210Cr12 steel using a multilayer-coated tungsten carbide insert with various nose radii (r). Tests are designed according to Taguchi’s L18 (21 × 34) orthogonal array. ANOVA has been performed to determine the effect of the cutting conditions, and mathematical models have been developed through response surface methodology (RSM). The results indicate that the feed rate and the tool nose radius are the main affecting factors on surface roughness while both tangential force and cutting power are affected mainly by the depth of cut followed by the feed rate and the nose radius. Other special tests of long term have been established in order to study the wear evolution and consequently to determine the tool life. The results indicate also that minimum quantity lubrication (MQL) leads to an important improvement in terms of the cutting tool life by a gain of 23~40% compared to wet and dry machining. It has been found that the MQL is an interesting way to minimize lubrication cost and protect operator health and the environment while keeping better machining quality.  相似文献   
4.
The firefly algorithm is a recent meta-heuristic inspired from nature. It is based on swarm intelligence of fireflies and generally used for solving continuous optimization problems. This paper proposes a new algorithm called “Quantum-inspired Firefly Algorithm with Particle Swarm Optimization (QIFAPSO)” that among other things, adapts the firefly approach to solve discrete optimization problems. The proposed algorithm uses the basic concepts of quantum computing such as superposition states of Q-bit and quantum measure to ensure a better control of the solutions diversity. Moreover, we use a discrete representation for fireflies and we propose a variant of the well-known Hamming distance to compute the attractiveness between them. Finally, we combine two strategies that cooperate in exploring the search space: the first one is the move of less bright fireflies towards the brighter ones and the second strategy is the PSO movement in which a firefly moves by taking into account its best position as well as the best position of its neighborhood. Of course, these two strategies of fireflies’ movement are adapted to the quantum representation used in the algorithm for potential solutions. In order to validate our idea and show the efficiency of the proposed algorithm, we have used the multidimensional knapsack problem which is known as an NP-Complete problem and we have conducted various tests of our algorithm on different instances of this problem. The experimental results of our algorithm are competitive and in most cases are better than that of existing methods.  相似文献   
5.
6.
Let ${\mathcal{B}}$ be a centrally symmetric convex polygon of ?2 and ‖p?q‖ be the distance between two points p,q∈?2 in the normed plane whose unit ball is ${\mathcal{B}}$ . For a set T of n points (terminals) in ?2, a ${\mathcal{B}}$ -network on T is a network N(T)=(V,E) with the property that its edges are parallel to the directions of ${\mathcal{B}}$ and for every pair of terminals t i and t j , the network N(T) contains a shortest ${\mathcal{B}}$ -path between them, i.e., a path of length ‖t i ?t j ‖. A minimum ${\mathcal{B}}$ -network on T is a ${\mathcal{B}}$ -network of minimum possible length. The problem of finding minimum ${\mathcal{B}}$ -networks has been introduced by Gudmundsson, Levcopoulos, and Narasimhan (APPROX’99) in the case when the unit ball ${\mathcal{B}}$ is a square (and hence the distance ‖p?q‖ is the l 1 or the l -distance between p and q) and it has been shown recently by Chin, Guo, and Sun (Symposium on Computational Geometry, pp. 393–402, 2009) to be strongly NP-complete. Several approximation algorithms (with factors 8, 4, 3, and 2) for the minimum Manhattan problem are known. In this paper, we propose a factor 2.5 approximation algorithm for the minimum ${\mathcal{B}}$ -network problem. The algorithm employs a simplified version of the strip-staircase decomposition proposed in our paper (Chepoi et al. in Theor. Comput. Sci. 390:56–69, 2008, and APPROX-RANDOM, pp. 40–51, 2005) and subsequently used in other factor 2 approximation algorithms for the minimum Manhattan problem.  相似文献   
7.
In this paper we present a polynomial time algorithm for solving the problem of partial covering of trees with n1 balls of radius R1 and n2 balls of radius R2 (R1 < R2) to maximize the total number of covered vertices. The solutions provided by this algorithm in the particular case R1 = R – 1, R2 = R can be used to obtain for any integer δ > 0 a factor (2+1/δ) approximation algorithm for solving the following augmentation problem with odd diameter constraints D = 2R + 1: Given a tree T, add a minimum number of new edges such that the augmented graph has diameter ≤ D. The previous approximation algorithm of Ishii, Yamamoto, and Nagamochi (2003) has factor 8.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号