首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
化学工业   2篇
金属工艺   10篇
轻工业   1篇
一般工业技术   13篇
冶金工业   3篇
自动化技术   3篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2003年   1篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
Room-temperature tensile properties of AZ31 alloy have significantly been improved when reinforced with carbon nanotube via ingot metallurgy process. However, high-temperature (up to 250 °C) elongation-to-failure tensile test of the developed nanocomposite revealed a considerable softening in the AZ31 alloy matrix accompanied by an incredible ductility increment (up to 132%). Microstructural characterization of the fractured samples revealed that the dynamic recrystallization process has induced a complete recrystallization in the AZ31 alloy at a lower temperature (150 °C) followed by substantial grain growth at a higher temperature used in this study. Fractography on the fractured surfaces revealed that the room-temperature mixed brittle-ductile modes of fracture behavior of AZ31 alloy have transformed into a complete ductile mode of fracture at high temperature.  相似文献   
2.
AZ31 nanocomposite containing Al2O3 nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The Al2O3 nanoparticle reinforcement was isolated prior to melting by wrapping in Al foil of minimal weight (<0.50 wt% with respect to AZ31 matrix weight). The AZ31 nanocomposite exhibited slightly smaller grain and intermetallic particle sizes than monolithic AZ31, reasonable Al2O3 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction unlike monolithic AZ31, and 30% higher hardness than monolithic AZ31. Compared to monolithic AZ31, the AZ31 nanocomposite exhibited higher 0.2%TYS, UTS, failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Also, compared to monolithic AZ31, the AZ31 nanocomposite exhibited higher 0.2%CYS and UCS, similar failure strain, and higher WOF (+5%, +5%, −4% and +11%, respectively). Inclusive of crystallographic texture changes, the effect of Al2O3 nanoparticle integration on the enhancement of tensile and compressive properties of AZ31 is investigated in this paper.  相似文献   
3.
New bimetal magnesium/aluminium macrocomposite containing millimeter-scale Al core reinforcement was fabricated using solidification processing followed by hot coextrusion. Microstructural characterisation revealed increased grain size, Mg texture change and unbalanced interfacial interdiffusion of Mg and Al into each other. Stress at the bimetal interface was attributed to solid solution formation, thermal expansion mismatch, unbalanced Kirkendall strain, lattice misfit strain, and strain localization effects, these being interface localized strengthening phenomena. Compressive testing revealed that presence of Al core decreased 0.2% YS (−23%) and ultimate compressive strength (UCS) (−11%), but significantly increased failure strain (+134%) and work of fracture (+60%) of Mg in the as-extruded macrocomposite. Also, interfacial relaxation during heat treating significantly increased failure strain (+17%) and work of fracture (+17%) of Mg/Al macrocomposite without compromising 0.2% YS and UCS. The effects of presence of millimeter-scale Al core as well as interfacial relaxation on the compressive properties of the bimetal macrocomposite are investigated in this paper.  相似文献   
4.
New bimetal AZ31-CNT/AA5052 macrocomposite comprising: (a) carbon nanotube (CNT) reinforced magnesium alloy AZ31 shell and (b) aluminium alloy AA5052 millimeter-scale core reinforcement was fabricated using solidification processing followed by hot coextrusion. Microstructural characterisation revealed more rounded intermetallic particle of decreased size, reasonable CNT distribution, and dominant (1 0 −1 1) texture in the longitudinal and transverse directions in the AZ31-CNT nanocomposite shell. Interdiffusion of Mg and Al across the core-shell macrointerface into each other was also significant. Compared to monolithic AZ31, the AZ31-CNT shell had significantly higher hardness (+30%). In tension, the presence of CNT (in the AZ31 shell) and AA5052 core significantly increased stiffness (+39%), ultimate strength (+13%), failure strain (+17%) and work of fracture (+27%) of AZ31, while yield strength (−2%) was marginally decreased. In compression, the presence of CNT (in the AZ31 shell) and AA5052 core significantly increased yield strength (+35%), failure strain (+42%) and work of fracture (+70%) of AZ31, while ultimate strength (+1%) was marginally increased. The effect of joint presence of: (a) CNT (in the AZ31 shell) and (b) AA5052 millimeter-scale core on tensile and compressive properties of AZ31 is investigated in this paper.  相似文献   
5.
6.
The half-life is defined as the number of periods required for the impulse response to a unit shock to a time series to dissipate by half. It is widely used as a measure of persistence, especially in international economics to quantify the degree of mean-reversion of the deviation from an international parity condition. Several studies have proposed bias-corrected point and interval estimation methods. However, they have found that the confidence intervals are rather uninformative with their upper bound being either extremely large or infinite. This is largely due to the distribution of the half-life estimator being heavily skewed and multi-modal. A bias-corrected bootstrap procedure for the estimation of half-life is proposed, adopting the highest density region (HDR) approach to point and interval estimation. The Monte Carlo simulation results reveal that the bias-corrected bootstrap HDR method provides an accurate point estimator, as well as tight confidence intervals with superior coverage properties to those of its alternatives. As an application, the proposed method is employed for half-life estimation of the real exchange rates of 17 industrialized countries. The results indicate much faster rates of mean-reversion than those reported in previous studies.  相似文献   
7.
Physical interactions at carbon nanotube-polymer interface   总被引:2,自引:0,他引:2  
Mechanical properties of carbon nanotube (CNT) reinforced polystyrene rod and CNT reinforced epoxy thin film were studied and the CNT-polymer interface in these composites was examined. Transmission and scanning electron microscopy examinations of CNT/polystyrene (PS) and CNT/epoxy composite showed that these polymers adhered well to CNT at the nanometer scale. Molecular mechanics simulations and elasticity calculations were used to quantify some of the important interfacial characteristics that critically control the performance of a composite material. In the absence of chemical bonding between CNT and the matrix, it is found that the non-bond interactions, consist of electrostatic and van der Waals forces, result in CNT-polymer interfacial shear stress (at 0 K) of about 138 and 186 MPa, respectively, for CNT/epoxy and CNT/PS. The high interfacial shear stress calculated, about an order of magnitude higher than micro fiber reinforced composites, is believed attributed to intimate contact between the two solid phases at the molecular scale. Simulations and calculations also showed that local non-uniformity of CNT and mismatch of the coefficients of thermal expansions between CNT and polymer matrix also promote the stress transfer ability between the two.  相似文献   
8.
The overall aim of engineering design is to improve on technology and way of life. Here, we show how the tensile properties of magnesium have been improved using concentric alternating macro-ring design. Specifically, Mg–nanoAl2O3 layered hybrid nano-composites were fabricated. These nano-composites were then hot extruded into fairly concentric hybrid alternating Mg and Mg–nanoAl2O3 macro-ring structures (having stressed micro-interface). We also show the first instance of mechanical property improvement by careful simultaneous design of macrostructure and microstructure in a composite. Here, we focus on the effects of varying the thickness of the pre-extrusion layers. The 0.2%YS, UTS and ductility of the ring structured hybrid nano-composites peaked at 3 mm pre-extrusion layer thickness, where the corresponding properties of monolithic Mg were significantly inferior in comparison. Further, our method of ring structured hybrid composite synthesis may possibly enable significant reduction in time and cost of manufacturing superconducting cables.  相似文献   
9.
Twin-bearing ewes were treated with epidermal growth factor (EGF) to determine its effect on mammogenesis and resultant milk production and composition. The EGF was infused intravenously at a dose rate of 0.5 mg/d in 300 ml saline between days 117 and 139 of gestation; control animals received placebo infusions of saline. All animals then received continuous infusions of 300 ml/d saline on days 139-144. Following parturition 1-5 d later, ewes were milked by hand for 10 d and thereafter were machine-milked until day 16 of lactation. At this level of treatment, EGF was not detected in the circulation during infusion and feed intake was not affected. All ewes gave birth to healthy twin lambs. There were no effects of EGF on birth weights of lambs, live weights of ewes or lengths of gestation. An EGF-immunoreactive material was detected in the mammary secretions of control ewes at a mean concentration of 2 micrograms/l on day 1 of lactation. Two ewes had detectable levels on day 2, but none was found in the milk thereafter. In the EGF-infused group, concentrations of EGF in colostrum were approximately 10 times higher than in the control ewes on day 1 of lactation and EGF was detected in mammary secretions on day 2 but not in subsequent milk samples. A range of 0.3-0.5% of the EGF infused appeared in mammary secretions over the first 2 d of lactation. No other differences were observed for colostrum composition, subsequent milk yield or composition between the two groups of ewes indicating that mammary gland development and function were unaffected. The levels of EGF observed in the mammary secretions of treated and control ewes indicate that the mammary glands accumulate and store EGF in the pre partum period.  相似文献   
10.
Uniaxial compressive properties of hybrid Mg/Al–CNT nano-composites are studied in the present paper. Hybrid nano-composites were fabricated using powder metallurgy route followed by microwave assisted rapid sintering technique and hot extrusion. The hybrid Mg/Al–CNT nano-composites exhibited slightly smaller grain sizes compared to monolithic Mg and reasonable hybrid Al–CNT nano-particle distribution up to Al content of 1.00 wt%. Compared to pure Mg, the Mg/Al–CNT nano-composites exhibited higher compressive yield strength (0.2% CYS), ultimate compressive strength (UCS) and work of fracture (WOF) (up to +36%, +76%, +36%) compared to pure Mg but failure strain was compromised. Inclusive of crystallographic texture changes, the effect of hybrid Al–CNT nano-particle integration on the enhancement of compressive properties of Mg is investigated in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号