首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64695篇
  免费   1468篇
  国内免费   868篇
电工技术   1014篇
综合类   95篇
化学工业   11397篇
金属工艺   3567篇
机械仪表   1846篇
建筑科学   2579篇
矿业工程   311篇
能源动力   2110篇
轻工业   4399篇
水利工程   536篇
石油天然气   1441篇
武器工业   1篇
无线电   5443篇
一般工业技术   14805篇
冶金工业   9976篇
原子能技术   925篇
自动化技术   6586篇
  2022年   430篇
  2021年   866篇
  2020年   586篇
  2019年   700篇
  2018年   1154篇
  2017年   1080篇
  2016年   1269篇
  2015年   1014篇
  2014年   1492篇
  2013年   3882篇
  2012年   2483篇
  2011年   3400篇
  2010年   2579篇
  2009年   2821篇
  2008年   2883篇
  2007年   2861篇
  2006年   2336篇
  2005年   2089篇
  2004年   1946篇
  2003年   1766篇
  2002年   1726篇
  2001年   1509篇
  2000年   1340篇
  1999年   1409篇
  1998年   2523篇
  1997年   2023篇
  1996年   1779篇
  1995年   1277篇
  1994年   1058篇
  1993年   1070篇
  1992年   847篇
  1991年   786篇
  1990年   725篇
  1989年   713篇
  1988年   554篇
  1987年   578篇
  1986年   537篇
  1985年   620篇
  1984年   519篇
  1983年   484篇
  1982年   468篇
  1981年   490篇
  1980年   478篇
  1979年   488篇
  1978年   437篇
  1977年   540篇
  1976年   767篇
  1975年   427篇
  1974年   397篇
  1973年   392篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
4.
Glass and Ceramics - Ceramic bricks based on low-melting clay and ferro-dust from self-disintegrating, low-carbon, ferrochrome slags, graded from M100 to M175, respectively, were obtained in the...  相似文献   
5.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
6.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
7.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
8.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
9.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
10.
Fluoro-substituted and heteroaromatic compounds are valuable intermediates for a variety of applications in pharma- and agrochemistry and synthetic chemistry. This study investigates the chemoenzymatic preparation of chiral alcohols bearing a heteroaromatic ring with an increasing degree of fluorination in α-position. Starting from readily available picoline derivatives prochiral α-halogenated acyl moieties were introduced with excellent selectivity and 64–95 % yield. The formed carbonyl group was subsequently reduced to the corresponding alcohols using the alcohol dehydrogenase from Lactobacillus kefir, yielding an enantiomeric excess of 95–>99 % and up to 98 % yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号