首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   3篇
机械仪表   1篇
轻工业   1篇
一般工业技术   1篇
自动化技术   1篇
  2023年   1篇
  2017年   2篇
  2016年   1篇
排序方式: 共有4条查询结果,搜索用时 16 毫秒
1
1.
This research has proposed a planar rectangular dipole antenna enclosed in double C‐shaped parasitically slit elements (i.e., radiator element) on a double‐cornered reflector for bandwidth enhancement. In the study, simulations were first carried out to determine the optimal parameters of the radiator element and then a radiator element prototype was fabricated and mounted onto a double‐cornered aluminum reflector. The simulated and measured |S11|<–10 dB of the antenna element covered the frequency ranges of 451–901 MHz (66.6%) and 455–886 MHz (64.3%), respectively. The gain was enhanced by the subsequent deployment of multiple radiator elements to fabricate a four‐element vertically array antenna on an elongated double‐cornered reflector. The simulated and measured |S11|20 and 相似文献   
2.
A 5G wireless system requests a high-performance compact antenna device. This research work aims to report the characterization and verification of the artificial magnetic conductor (AMC) metamaterial for a high-gain planar antenna. The configuration is formed by a double-side structure on an intrinsic dielectric slab. The 2-D periodic pattern as an impedance surface is mounted on the top surface, whereas at the bottom surface the ground plane with an inductive narrow aperture source is embedded. The characteristic of the resonant transmission is illustrated based on the electromagnetic virtual object of the AMC resonant structure to reveal the unique property of a magnetic material response. The characteristics of the AMC metamaterial and the planar antenna synthesis are investigated and verified by experiment using a low-cost FR4 dielectric material. The directional antenna gain is obviously enhanced by guiding a primary field radiation. The loss effect in a dielectric slab is essentially studied having an influence on antenna radiation. The verification shows a peak of the antenna gain around 9.7 dB at broadside which is improved by 6.2 dB in comparison with the primary aperture antenna without the AMC structure. The thin antenna profile of λ/37.5 is achieved at 10 GHz for 5G evolution. The emission property in an AMC structure herein contributes to the development of a low-profile and high-gain planar antenna for a compact wireless component.  相似文献   
3.
4.
Several new features of mitochondrial nucleoid and its surroundings in mammalian cells were described previously (Pracha?, 2016). Very small details were observed using the improved transmission electron microscopy method, as described in the article. In the meantime, the method has again been improved to 2 Å resolutions in the cell section. The method described in detail in the present work is documented on the same records that were published in lower resolution in the work Pracha? (2016), enabling comparison of the achieved resolution with the previous one. New records are also presented, showing extremely high resolution and thus implying the importance of the method. Potential use of this method in different fields is suggested.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号