首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学工业   1篇
能源动力   1篇
一般工业技术   3篇
自动化技术   1篇
  2014年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
The generation of hydrogen over CNT/Pt/TiO2 catalysts by the splitting of water under irradiation with UV light is studied. The maximum rate of evolution of hydrogen was 2300 micromolg(-1)h(-1) on 0.06 wt% Pt/TiO2 (sol-gel) and reached a stable value of approximately 2000 micromolg(-1)h(-1) when the Pt loading exceeded at a Pt loading of over 0.06 wt%. Single wall carbon nanotubes (SWCNTs) were applied to enhance the hydrogen generation activity. The evolution rate of hydrogen on 0.06 wt% Pt/0.02 wt% SWCNT-TiO2 (sol-gel) was 3836 micromolh(-1)g(-1). 0.1 M NaCI yielded more hydrogen than any other tested salt. The XRD spectra show that the crystal lattices of commercial TiO2 (ST-21) and self-made TiO2 (sol-gel method) are of the anatase form. However, the TEM images and other catalytic activity data show that the SWCNTs act as wires for the transmission of electrons.  相似文献   
2.
A new blended material, m-CNTs/NaClO4/Ppy, was developed as a gas sensor to detect ethanol concentrations at room temperature. The sensing material polypyrrole (Ppy) was synthesized in situ by UV-photo-polymerization. The multiwall carbon nanotubes (m-CNTs) added enhanced the short-term repeatability of the Ppy-sensing material. The relative resistance variation (Rethanol/Rair) of m-CNTs/NaClO4/Ppy was 1.193 when exposed to ethanol of 30,000 ppm. The sensor response and recovery times (both 20 s) were very short to this concentration. An unstable baseline of the sensor was explained by theoretical calculation of molecular dynamics made for ethanol adsorption on polypyrrole, which revealed formation of a new bond, N–HO. Adsorption energy decreased with increasing the number of ethanol molecules adsorbed and was 0.8 kcal/mol at eight adsorbed molecules. Sensor responses of three different Ppy samples were measured to ethanol concentrations of 18,000–40,000 ppm.  相似文献   
3.
Nitrogen/titanium dioxide (N/TiO2) visible light photocatalysts were prepared using the sol–gel method. The catalysts were characterized using transmission electron microscopy, reflective UV–visible spectroscopy, specific surface area measurements, and X-ray diffraction. The prepared catalysts were used to generate hydrogen gas through the water-splitting reaction under visible light (wavelengths greater than 400 nm). Various N/Ti addition ratios were tested, and the hydrogen generation rates were compared to determine the optimal ratio. The maximal hydrogen production rate (approximately 55 μmol h−1 g−1) was attained when the N/Ti ratio of N–TiO2 was 10. When PdO and Pt were loaded onto the N–TiO2 catalyst, the hydrogen generation rates increased to 544 and 772 μmol h−1 g−1, respectively. The highest hydrogen production rate (2460 μmol h−1 g−1) was obtained when bimetallic 0.05 wt% PdO-0.10 wt% Pt/N–TiO2 was used. After three times use the hydrogen yield of the catalyst was maintained as 83%. A possible mechanism of water splitting catalyzed by this visible light photocatalyst is proposed.  相似文献   
4.
The photocatalytic degradation of terbufos in aqueous suspensions was investigated by using titanium dioxide (TiO(2)) as a photocatalyst. About 99% of terbufos was degraded after UV irradiation for 90 min. Factors such as pH of the system, TiO(2) dosage, and presence of anions were found to influence the degradation rate. Photodegradation of terbufos by TiO(2)/UV exhibited pseudo-first-order reaction kinetics, and a reaction quantum yield of 0.289. The electrical energy consumption per order of magnitude for photocatalytic degradation of terbufos was calculated and showed that a moderated efficiency (E(EO)=71 kWh/(m(3)order)) was obtained in TiO(2)/UV process. To obtain a better understanding of the mechanistic details of this TiO(2)-assisted photodegradation of terbufos with UV irradiation, the intermediates of the processes were separated, identified, and characterized by the solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) technique. The probable photodegradation pathways were proposed and discussed.  相似文献   
5.
A semiconductor ethanol sensor was developed using ZnO–CuO and its performance was evaluated at room temperature. Hetero-junction sensor was made of ZnO–CuO nanoparticles for sensing alcohol at room temperature. Nanoparticles were prepared by hydrothermal method and optimized with different weight ratios. Sensor characteristics were linear for the concentration range of 150–250 ppm. Composite materials of ZnO–CuO were characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and high-resolution transmission electron microscopy (HR-TEM). ZnO–CuO (1:1) material showed maximum sensor response (S = Rair/Ralcohol) of 3.32 ± 0.1 toward 200 ppm of alcohol vapor at room temperature. The response and recovery times were measured to be 62 and 83 s, respectively. The linearity R2 of the sensor response was 0.9026. The sensing materials ZnO–CuO (1:1) provide a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature.  相似文献   
6.
The photocatalytic degradation of phorate in aqueous suspensions was examined with the use of titanium dioxide (TiO2) as a photocatalyst. About 99% of phorate was degraded after UV irradiation for 60 min. The photodegradation of phorate followed pseudo-first-order kinetics and parameters such as pH of the system, TiO2 dosage, and presence of anions were found to influence the reaction rate. To obtain a better understanding of the mechanistic details of this TiO2-assisted photodegradation of phorate with UV irradiation, the intermediates of the processes were separated, identified, and characterized by the solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) techniques. The probable photodegradation pathways were proposed and discussed. To the best of our knowledge, this is the first study that reports the degradation pathways of phorate. The electrical energy consumption per order of magnitude for photocatalytic degradation of phorate was also calculated and showed that a moderated efficiency (EEO = 96 kWh/(m3 order)) was obtained in TiO2/UV process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号