首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
一般工业技术   1篇
自动化技术   3篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A novel meshless numerical procedure based on the method of fundamental solutions (MFS) and the heat polynomials is proposed for recovering a time-dependent heat source and the boundary data simultaneously in an inverse heat conduction problem (IHCP). We will transform the problem into a homogeneous IHCP and initial value problems for the first-order ordinary differential equation. An improved method of MFS is used to solve the IHCP and a finite difference method is applied for solving the initial value problems. The advantage of applying the proposed meshless numerical scheme is producing the shape functions which provide the important delta function property to ensure that the essential conditions are fulfilled. Numerical experiments for some examples are provided to show the effectiveness of the proposed algorithm.  相似文献   
2.
In this paper, the determination of the source term in a reaction–diffusion convection problem is investigated. First with suitable transformations, the problem is reduced, then a new meshless method based on the use of the heat polynomials as basis functions is proposed to solve the inverse problem. Due to the ill-posed inverse problem, the Tikhonov regularization method with a generalized cross-validation criterion is employed to obtain a numerical stable solution. Finally, some numerical examples are presented to show the accuracy and effectiveness of the algorithm.  相似文献   
3.

Structural engineering is focused on the safe and efficient design of infrastructure. Projects can range in size and complexity, many requiring massive amounts of materials and expensive construction and operational costs. Therefore, one of the primary objectives for structural engineers is a cost-effective design. Incorporating optimality criteria into the design procedure introduces additional complexities that result in problems that are nonlinear, nonconvex, and have a discontinuous solution space. Population-based optimization algorithms (known as metaheuristics) have been found to be very efficient approaches to these problems. Many researchers have developed and applied state-of-art metaheuristics to automate and optimize the design of real-world civil engineering problems. While there is a large body of published papers in this area, there are few comprehensive reviews that list, summarize, and categorize metaheuristic optimization in structural engineering. This paper provides an extensive survey of a wide range of metaheuristic techniques to structural engineering optimization problems. Also, information is provided on available structural engineering benchmark problems, the formulation of different objective functions, and the handling of various types of constraints. The performance of different optimization techniques is compared for many benchmark problems.

  相似文献   
4.
Engineering with Computers - Generally, the first-order reliability method (FORM) is an efficient and accurate reliability method for problems with linear limit state functions (LSFs). It is showed...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号