首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   5篇
化学工业   10篇
机械仪表   2篇
能源动力   2篇
轻工业   7篇
无线电   1篇
一般工业技术   3篇
自动化技术   4篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2017年   5篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Continuous improvements in very-large-scale integration (VLSI) technology and design software have significantly broadened the scope of digital signal processing (DSP) applications. The use of application-specific integrated circuits (ASICs) and programmable digital signal processors for many DSP applications have changed, even though new system implementations based on reconfigurable computing are becoming more complex. Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation (DWT) and sophisticated computerized design techniques, which are much needed in today’s modern world. New research and commercial efforts to sustain power optimization, cost savings, and improved runtime effectiveness have been initiated as initial reconfigurable technologies have emerged. Hence, in this paper, it is proposed that the DWT method can be implemented on a field-programmable gate array in a digital architecture (FPGA-DA). We examined the effects of quantization on DWT performance in classification problems to demonstrate its reliability concerning fixed-point math implementations. The Advanced Encryption Standard (AES) algorithm for DWT learning used in this architecture is less responsive to resampling errors than the previously proposed solution in the literature using the artificial neural networks (ANN) method. By reducing hardware area by 57%, the proposed system has a higher throughput rate of 88.72%, reliability analysis of 95.5% compared to the other standard methods.  相似文献   
2.
ABSTRACT

Novel tertiary nanocomposite films comprising of poly (vinyl alcohol) (PVA), poly (4-styrenesulfonic acid) (PSSA) and titanium dioxide (TiO2) nanoparticles (NPS) were prepared using simple solvent casting method. The structural, thermal, morphological, thermo-mechanical and electromagnetic interference (EMI) shielding properties of PVA/PSSA/TiO2 nanocomposite films were investigated. The EMI shielding effectiveness (SE) of PVA/PSSA/TiO2 nanocomposite films in the X and Ku band was found to be 12 dB and 13 dB respectively at 25 wt% TiO2 NPs loading. These results demonstrate the possible applications of PVA/PSSA/TiO2 nanocomposite films as low cost, lightweight and flexible material for EMI shielding.  相似文献   
3.
Poly(vinyl alcohol) (PVA)‐amino acid (AA) biocomposite membranes are prepared by blending PVA with AAs such as glycine, lysine (LY), and phenyl alanine followed by in situ crosslinking with citric acid (CA) and explored as a new class of biocomposite membrane electrolytes for direct methanol fuel cells (DMFCs). CA crosslinks with PVA through esterification offers adequate chemical, thermal, and morphological stability thereby produces methanol‐obstructing close‐packed polymeric network. These biocomposite membranes are characterized in terms of mechanical, thermal, sorption, and proton‐conducting properties. Hydrophilic nature of AA zwitterions significantly facilitates proton conduction and CA crosslinking mitigates methanol crossover through establishing appropriate balance between hydrophilic/hydrophobic domains. The rational design of membrane microstructure with proper arrangement of hydrophobic/hydrophilic domains is a key to enhance electrochemical selectivity of PVA‐AA/CA biocomposite membranes. Biocomposite membrane comprising LY exhibits nearly threefold higher electrochemical selectivity in relation to PVA/CA blend membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43514.  相似文献   
4.
Mesoporous Pt/Ni architecture has been prepared by template assisted electrochemical deposition of Pt–Ni over anodized aluminum oxide template followed by controlled de-alloying with nitric acid. Surface characteristics of the ordered bimetallic mesoporous Pt/Ni structure were systematically characterized through XRD, SEM, AFM and XPS analyses. It is designated by XPS analysis that presence of Ni significantly modifies surface characteristics and electronic states of Pt accompanied with a downshift in the d-band character of Pt. Mesoporous morphology is highly beneficial to offer readily accessible Pt catalytic sites for methanol oxidation reaction. The prepared bimetallic Pt/Ni was used as electro catalyst for DMFC. Comparison of electrocatalytic activity of bimetallic mesoporous Pt/Ni with bimetallic smooth Pt/Ni was interrogated using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy analyses. Distinctly enhanced electrocatalytic activity with improved CO tolerance associated with bimetallic mesoporous Pt/Ni electrode towards methanol oxidation stems from a synergy existing between mesoporous structure with bi-metallic composition.  相似文献   
5.
Simulation and numerical modeling are becoming increasingly popular due to the ability to seek solutions for a problem without undertaking real-life experiments. For the problems of heat transfer, these techniques to generate relevant data by incorporating different changes to the input parameters. Heat transfer property of textile materials is a major concern since it influences comfort properties of clothing. In this paper, numerical simulation was applied to evaluate the heat flux, temperature distributions, and convective heat transfer coefficients of the fibrous insulating materials treated with aerogel. The computational model simulated the insulation behavior of nonwoven fabrics without and with aerogel. Ansys and Comsol were used to model and simulate heat transfer. The simulation was performed assuming laminar flow and since the Mach number was < 0.3, the compressible flow model with Mach number < 0.3 was used. The results of simulation were correlated to experimental measurements for validation. Furthermore, aerogel-treated fabric samples showed better thermal performance. Using this model, the heat transfer properties of the nonwoven fabrics treated with aerogel can be optimized further.  相似文献   
6.
Multi-walled carbon nanotubes (MWCNTs) based microporous layer on the non-woven carbon paper substrates was prepared by in situ growth in a chemical vapor deposition method. Pt with a loading of ~0.13 mg cm?2 was electrodeposited at ?0.3, ?0.6, ?1.2, ?2.4, and ?3.6 V vs SCE in a chloroplatinic acid (60 g/L) and hydrochloric acid (10 g/L) bath using a potentiostat. Scanning electron micrographs showed that the Pt nanoparticles decorated on the MWCNTs/carbon paper are highly uniform, especially at an electrodeposition voltage of ?0.6 V vs SCE. Pt particles' size at various deposition potentials, as estimated by X-ray diffraction analysis is in nanosize range with an average diameter of 6 nm. Fuel cell performance of the Pt deposited in situ grown MWCNTs carbon paper was evaluated using Nafion-212 membrane at various operating conditions. The cathode with Pt deposition at ?0.6 V showed a power density of ~640 mW cm?2 at 80 °C using H2 and O2 at 90% RH and 101 kPa.  相似文献   
7.
Journal of Electronic Materials - This paper presents a systematic study of Al0.23Ga0.77N/GaN/AlxGa1?xN double-heterojunction high-electron-mobility transistors (DH-HEMTs) with a boron-doped...  相似文献   
8.
A black hole attack in ad hoc network refers to an attack by malicious nodes, which forcibly acquires the route from a source to destination by falsely advertising shortest hop count to reach the destination node. In this paper, we present a Modified Dynamic Source Routing Protocol (MDSR) to detect and prevent selective black hole attack. Selective black hole attack is a special kind of black hole attack where malicious nodes drop the data packets selectively. We proposed an Intrusion Detection System (IDS) where the IDS nodes are set in promiscuous mode only when required, to detect the abnormal difference in the number of data packets being forwarded by a node. When any anomaly is detected, the nearby IDS node broadcast the block message, informing all nodes on the network to cooperatively isolate the malicious node from the network. The proposed technique employs Glomosim to validate the effectiveness of proposed intrusion detection system.  相似文献   
9.
A detailed experimental and simulation study of the extraction of a 24 keV He(+) beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 π mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations have been studied using the calculated second-order transfer map of the analyzing magnet, with which we can reproduce the phase-space distributions of the ion beam behind the analyzing magnet. Using the transfer map and trajectory calculations we have worked out an aberration compensation scheme based on the addition of compensating hexapole components to the main dipole field by modifying the shape of the poles. The simulations predict that by compensating the kinematic and geometric aberrations in this way and enlarging the pole gap the overall beam transport efficiency can be increased from 16% to 45%.  相似文献   
10.
DNA nanostructures have emerged as intriguing tools for numerous biomedical applications. However, in many of those applications and most notably in drug delivery, their stability and function may be compromised by the biological media. A particularly important issue for medical applications is their interaction with proteins such as endonucleases, which may degrade the well-defined nanoscale shapes. Herein, fundamental insights into this interaction are provided by monitoring DNase I digestion of four structurally distinct DNA origami nanostructures (DONs) in real time and at a single-structure level by using high-speed atomic force microscopy. The effect of the solid–liquid interface on DON digestion is also assessed by comparison with experiments in bulk solution. It is shown that DON digestion is strongly dependent on its superstructure and flexibility and on the local topology of the individual structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号