首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
一般工业技术   1篇
自动化技术   3篇
  2021年   2篇
  2020年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics were fabricated by sol-gel technique. The XRD results revealed the formation of a single phase perovskite structured Bi0.5Na0.5TiO3-BaTiO3 at 600 °C. The SEM images showed dense microstructure and the optimum density of the ceramics sintered at 1100 °C was 5.2 g/cm3. The saturation polarization (P s ) was found to be increased with increasing temperature while the remnant polarization (P r ) was found to be increased gradually and then decreased abruptly near 85 °C, which could be attributed to the phase transformation. The coercive electric field (E c ) was found to be decreased gradually with increasing temperature. The maximum value of dielectric constant (? r ) at room temperature was 800 and dielectric loss at 1 MHz was 0.07.  相似文献   
2.

In a composite column, the performance of both the concrete and steel has a considerable effect on the structural behaviour under different loading conditions. This study applies several artificial intelligence (AI) techniques to optimise the bearing capacity of concrete-filled steel tube (CFST) columns. First, the bearing capacity values of the CFST columns are estimated by an artificial neural network (ANN) technique. Using 303 datasets, the outer diameter, concrete compressive strength, tensile yield stress of the steel column, thickness of the steel cover, and length of the applied samples are considered as the model inputs. Following a series of analyses, several ANN models are developed. The ANN model with 8 neurons and 250 iterations is determined as the best model to predict the bearing capacity of the CFST columns. Subsequently, the invasive weed optimisation (IWO) technique, which is considered the most current optimisation algorithm, is developed to maximise the results of the bearing capacity by considering the selected ANN model. To highlight the ability of IWO, the artificial bee colony (ABC) algorithm is also applied. Consequently, it is found that both optimisation algorithms can design input parameters such that the maximum value of the bearing capacity can be obtained. The bearing capacity of the CFST columns from the ABC and IWO techniques indicates that IWO has a better capability of maximising the bearing. Thus, IWO can optimise similar problems with a high rate of performance.

  相似文献   
3.

The type of materials used in designing and constructing structures significantly affects the way the structures behave. The performance of concrete and steel, which are used as a composite in columns, has a considerable effect upon the structure behavior under different loading conditions. In this paper, several advanced methods were applied and developed to predict the bearing capacity of the concrete-filled steel tube (CFST) columns in two phases of prediction and optimization. In the prediction phase, bearing capacity values of CFST columns were estimated through developing gene expression programming (GEP)-based tree equation; then, the results were compared with the results obtained from a hybrid model of artificial neural network (ANN) and particle swarm optimization (PSO). In the modeling process, the outer diameter, concrete compressive strength, tensile yield stress of the steel column, thickness of steel cover, and the length of the samples were considered as the model inputs. After a series of analyses, the best predictive models were selected based on the coefficient of determination (R2) results. R2 values of 0.928 and 0.939 for training and testing datasets of the selected GEP-based tree equation, respectively, demonstrated that GEP was able to provide higher performance capacity compared to PSO–ANN model with R2 values of 0.910 and 0.904 and ANN with R2 values of 0.895 and 0.881. In the optimization phase, whale optimization algorithm (WOA), which has not yet been applied in structural engineering, was selected and developed to maximize the results of the bearing capacity. Based on the obtained results, WOA, by increasing bearing capacity to 23436.63 kN, was able to maximize significantly the bearing capacity of CFST columns.

  相似文献   
4.

Prediction of pile-bearing capacity developing artificial intelligence models has been done over the last decade. Such predictive tools can assist geotechnical engineers to easily determine the ultimate pile bearing capacity instead of conducting any difficult field tests. The main aim of this study is to predict the bearing capacity of pile developing several smart models, i.e., neuro-genetic, neuro-imperialism, genetic programing (GP) and artificial neural network (ANN). For this purpose, a number of concrete pile characteristics and its dynamic load test specifications were investigated to select pile cross-sectional area, pile length, pile set, hammer weight and drop height as five input variables which have the most impacts on pile bearing capacity as the single output variable. It should be noted that all the aforementioned parameters were measured by conducting a series of pile driving analyzer tests on precast concrete piles located in Pekanbaru, Indonesia. The recorded data were used to establish a database of 50 test cases. With regard to data modelling, many smart models of neuro-genetic, neuro-imperialism, GP and ANN were developed and then evaluated based on the three most common statistical indices, i.e., root mean squared error (RMSE), coefficient determination (R2) and variance account for (VAF). Based on the simulation results and the computed indices’ values, it is observed that the proposed GP model with training and test RMSE values of 0.041 and 0.040, respectively, performs noticeably better than the proposed neuro-genetic model with RMSE values of 0.042 and 0.040, neuro-imperialism model with RMSE values of 0.045 and 0.059, and ANN model with RMSE values of 0.116 and 0.108 for training and test sets, respectively. Therefore, this GP-based model can provide a new applicable equation to effectively predict the ultimate pile bearing capacity.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号