首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
无线电   2篇
自动化技术   6篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2012年   2篇
  2009年   1篇
  2007年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
In this paper, a novel computer-based approach is proposed for malignancy risk assessment of thyroid nodules in ultrasound images. The proposed approach is based on boundary features and is motivated by the correlation which has been addressed in medical literature between nodule boundary irregularity and malignancy risk. In addition, local echogenicity variance is utilized so as to incorporate information associated with local echogenicity distribution within nodule boundary neighborhood. Such information is valuable for the discrimination of high-risk nodules with blurred boundaries from medium-risk nodules with regular boundaries. Analysis of variance is performed, indicating that each boundary feature under study provides statistically significant information for the discrimination of thyroid nodules in ultrasound images, in terms of malignancy risk. k-nearest neighbor and support vector machine classifiers are employed for the classification tasks, utilizing feature vectors derived from all combinations of features under study. The classification results are evaluated with the use of the receiver operating characteristic. It is derived that the proposed approach is capable of discriminating between medium-risk and high-risk nodules, obtaining an area under curve, which reaches 0.95.  相似文献   
2.
This work introduces a novel active contour-based scheme for unsupervised segmentation of protein spots in two-dimensional gel electrophoresis (2D-GE) images. The proposed segmentation scheme is the first to exploit the attractive properties of the active contour formulation in order to cope with crucial issues in 2D-GE image analysis, including the presence of noise, streaks, multiplets and faint spots. In addition, it is unsupervised, providing an alternate to the laborious, error-prone process of manual editing, which is required in state-of-the-art 2D-GE image analysis software packages. It is based on the formation of a spot-targeted level-set surface, as well as of morphologically-derived active contour energy terms, used to guide active contour initialization and evolution, respectively. The experimental results on real and synthetic 2D-GE images demonstrate that the proposed scheme results in more plausible spot boundaries and outperforms all commercial software packages in terms of segmentation quality.  相似文献   
3.
This paper presents a novel framework for thyroid ultrasound image segmentation that aims to accurately delineate thyroid nodules. This framework, named GA-VBAC incorporates a level set approach named Variable Background Active Contour model (VBAC) that utilizes variable background regions, to reduce the effects of the intensity inhomogeneity in the thyroid ultrasound images. Moreover, a parameter tuning mechanism based on Genetic Algorithms (GA) has been considered to search for the optimal VBAC parameters automatically, without requiring technical skills. Experiments were conducted over a range of ultrasound images displaying thyroid nodules. The results show that the proposed GA-VBAC framework provides an efficient, effective and highly objective system for the delineation of thyroid nodules.  相似文献   
4.
Multimedia Tools and Applications - This work introduces a computational method for the recognition of structural elements in architectural floor plans. The proposed method requires minimal user...  相似文献   
5.
6.
7.
This paper presents a computer-aided approach for nodule delineation in thyroid ultrasound (US) images. The developed algorithm is based on a novel active contour model, named variable background active contour (VBAC), and incorporates the advantages of the level set region-based active contour without edges (ACWE) model, offering noise robustness and the ability to delineate multiple nodules. Unlike the classic active contour models that are sensitive in the presence of intensity inhomogeneities, the proposed VBAC model considers information of variable background regions. VBAC has been evaluated on synthetic images, as well as on real thyroid US images. From the quantification of the results, two major impacts have been derived: 1) higher average accuracy in the delineation of hypoechoic thyroid nodules, which exceeds 91%; and 2) faster convergence when compared with the ACWE model.  相似文献   
8.
We present a novel framework for automatic extraction of the progress of an infection from time-series medical images, with application to pneumonia monitoring. In each image of a series, the lungs, which are the body components of interest in our study, are detected and delineated by a modified active shape model-based algorithm that is constrained by binary approximation masks. This algorithm offers resistance in the presence of infection manifestations that may distort the typical appearance of the body components of interest. The relative extent of the infection manifestations is assessed by supervised classification of samples acquired from the respective image regions. The samples are represented by multiple dissimilarity features fused according to a novel entropy-based weighted voting scheme offering nonparametric operation and robustness to outliers. The output of the proposed framework is a time series of structured data quantifying the relative extent of infection manifestations at the body components of interest over time. The results obtained indicate an improved performance over relevant state-of-the-art methods. The overall accuracy quantified by the area under receiver operating characteristic reaches 90.0 ± 2.1%. The effectiveness of the proposed framework to pneumonia monitoring, the generality, and the adaptivity of its methods open perspectives for application to other medical imaging domains.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号