首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学工业   1篇
轻工业   1篇
无线电   1篇
一般工业技术   6篇
冶金工业   7篇
自动化技术   8篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   4篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2000年   4篇
  1998年   4篇
  1997年   2篇
  1993年   1篇
  1974年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
Regularized image recovery in scattering media   总被引:1,自引:0,他引:1  
When imaging in scattering media, visibility degrades as objects become more distant. Visibility can be significantly restored by computer vision methods that account for physical processes occurring during image formation. Nevertheless, such recovery is prone to noise amplification in pixels corresponding to distant objects, where the medium transmittance is low. We present an adaptive filtering approach that counters the above problems: while significantly improving visibility relative to raw images, it inhibits noise amplification. Essentially, the recovery formulation is regularized, where the regularization adapts to the spatially varying medium transmittance. Thus, this regularization does not blur close objects. We demonstrate the approach in atmospheric and underwater experiments, based on an automatic method for determining the medium transmittance.  相似文献   
2.
Propagation invariance is extended in the paraxial regime, leading to a generalized self-imaging effect. These wave fields are characterized by a finite number of transverse self-images that appear, in general, at different orientations and scales. They possess finite energy and thus can be accurately generated. Necessary and sufficient conditions are derived, and they are appropriately represented in the Gauss-Laguerre modal plane. Relations with the following phenomena are investigated: classical self-imaging, rotating beams, eigen-Fourier functions, and the recently introduced generalized propagation-invariant wave fields. In the paraxial regime they are all included within the generalized self-imaging effect that is presented. In this context we show an important relation between paraxial Bessel beams and Gauss-Laguerre beams.  相似文献   
3.
Cross-modal analysis is a natural progression beyond processing of single-source signals. Simultaneous processing of two sources can reveal information that is unavailable when handling the sources separately. Indeed, human and animal perception, computer vision, weather forecasting, and various other scientific and technological fields can benefit from such a paradigm. A particular cross-modal problem is localization: out of the entire data array originating from one source, localize the components that best correlate with the other. For example, auditory and visual data sampled from a scene can be used to localize visual events associated with the sound track. In this paper we present a rigorous analysis of fundamental problems associated with the localization task. We then develop an approach that leads efficiently to a unique, high definition localization outcome. Our method is based on canonical correlation analysis (CCA), where inherent ill-posedness is removed by exploiting sparsity of cross-modal events. We apply our approach to localization of audio-visual events. The proposed algorithm grasps such dynamic audio-visual events with high spatial resolution. The algorithm effectively detects the pixels that are associated with sound, while filtering out other dynamic pixels, overcoming substantial visual distractions and audio noise. The algorithm is simple and efficient thanks to its reliance on linear programming, while being free of user-defined parameters  相似文献   
4.
We present an approach to image the polarization state of object points in a wide field of view, while enhancing the radiometric dynamic range of imaging systems by generalizing image mosaicing. The approach is biologically inspired, as it emulates spatially varying polarization sensitivity of some animals. In our method, a spatially varying polarization and attenuation filter is rigidly attached to a camera. As the system moves, it senses each scene point multiple times, each time filtering it through a different filter polarizing angle, polarizance, and transmittance. Polarization is an additional dimension of the generalized mosaicing paradigm, which has recently yielded high dynamic range images and multispectral images in a wide field of view using other kinds of filters. The image acquisition is as easy as in traditional image mosaics. The computational algorithm can easily handle nonideal polarization filters (partial polarizers), variable exposures, and saturation in a single framework. The resulting mosaic represents the polarization state at each scene point. Using data acquired by this method, we demonstrate attenuation and enhancement of specular reflections and semi reflection separation in an image mosaic.  相似文献   
5.
6.
Consider situations where the depth at each point in the scene is multi-valued, due to the presence of a virtual image semi-reflected by a transparent surface. The semi-reflected image is linearly superimposed on the image of an object that is behind the transparent surface. A novel approach is proposed for the separation of the superimposed layers. Focusing on either of the layers yields initial separation, but crosstalk remains. The separation is enhanced by mutual blurring of the perturbing components in the images. However, this blurring requires the estimation of the defocus blur kernels. We thus propose a method for self calibration of the blur kernels, given the raw images. The kernels are sought to minimize the mutual information of the recovered layers. Autofocusing and depth estimation in the presence of semi-reflections are also considered. Experimental results are presented.  相似文献   
7.
Underwater, natural illumination typically varies strongly temporally and spatially. The reason is that waves on the water surface refract light into the water in a spatiotemporally varying manner. The resulting underwater illumination field forms a caustic network and is known as flicker. This work shows that caustics can be useful for stereoscopic vision, naturally leading to range mapping of the scene. Range triangulation by stereoscopic vision requires the determination of correspondence between image points in different viewpoints, which is often a difficult problem. We show that the spatiotemporal caustic pattern very effectively establishes stereo correspondences. Thus, we term the use of this effect as CauStereo. The temporal radiance variations due to flicker are unique to each object point, thus disambiguating the correspondence, with very simple calculations. Theoretical limitations of the method are analyzed using ray-tracing simulations. The method is demonstrated by underwater in situ experiments.  相似文献   
8.
9.
We have analyzed the mechanism of human endothelial injury in a human peripheral blood lymphocyte-severe combined immunodeficient (huPBL-SCID) mouse/human skin graft model of allograft injury and examined the effect of immunosuppressive drugs on this process. In this model, split-thickness human skin containing the superficial dermal microvessels was grafted onto immunodeficient C.B-17 SCID or SCID/beige mice and allowed to heal. Human peripheral blood mononuclear cells (PBMCs) allogeneic to the skin, when subsequently introduced by intraperitoneal injection, caused destruction of the human dermal microvasculature by day 16, evident as endothelial cell sloughing and thrombosis. In the same specimens, mouse microvessels that invaded the human skin graft were uninjured. Human microvascular cell injury was accompanied by a mononuclear cell infiltrate consisting of approximately equal numbers of human CD4+ and CD8+ T cells, some of which contained perforin-positive granules. We found no evidence of human natural killer cells and noted occasional human, but not mouse, macrophages at a frequency indistinguishable from that resident in skin on animals not receiving human PBMCs. These human T cell infiltrates did not extend into adjacent mouse skin. Human immunoglobulin G antibody was detected in the blood and was diffusely present throughout mouse and human tissues in SCID mice receiving PBMCs. Mouse C3 was detected on human dermal vessels in both unreconstituted control animals and those that received PBMCs. Blood and tissues from mice injected with PBMCs depleted of B cells showed no human immunoglobulin, but circulating CD3+ cells were detected by flow cytometry at levels comparable with those of animals receiving whole PBMCs. Significantly, skin graft infiltration by human T cells and human dermal microvascular injury were equivalent in the B cell-depleted and whole-PBMC-reconstituted mice. Mice inoculated with PBMCs depleted of CD8+ T cells developed microvascular injury and infiltrates containing perforin-expressing CD4+ T cells. These data suggested a cytolytic T cell-dependent mechanism of microvessel injury. We then tested the ability of T cell immunosuppressants, cyclosporine and rapamycin, to attenuate vessel damage. Neither cyclosporine nor rapamycin alone effectively reduced either mononuclear cell infiltration or vascular injury. However, a combination of the two agents reduced both parameters. We conclude that the huPBL-SCID/skin allograft model may be used both to study cytolytic T cell-mediated rejection and to test the effect of immunosuppressive drug strategies in vivo in a small-animal model of human immune responses.  相似文献   
10.
Leptin is a hormone that regulates food intake, and its receptor (OB-Rb) is expressed primarily in the hypothalamus. Here, it is shown that OB-Rb is also expressed in human vasculature and in primary cultures of human endothelial cells. In vitro and in vivo assays revealed that leptin has angiogenic activity. In vivo, leptin induced neovascularization in corneas from normal rats but not in corneas from fa/fa Zucker rats, which lack functional leptin receptors. These observations indicate that the vascular endothelium is a target for leptin and suggest a physiological mechanism whereby leptin-induced angiogenesis may facilitate increased energy expenditure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号