首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学工业   3篇
金属工艺   1篇
机械仪表   1篇
轻工业   2篇
无线电   1篇
一般工业技术   2篇
冶金工业   8篇
自动化技术   4篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2000年   2篇
排序方式: 共有22条查询结果,搜索用时 46 毫秒
1.
2.
The effects of microstructural changes in heavy-section Mn-Mo-Ni low alloy steel on Charpy impact properties were investigated using a 210 mm thick reactor pressure vessel. Specimens were sampled from 5 different positions at intervals of 1/4 thickness from the inner surface to the outer surface. A detailed microstructural analysis of impact-fractured specimens showed that coarse carbides along the lath boundaries acted as fracture initiation sites, and cleavage cracks deviated at prior-austenite grain boundaries and bainite lath boundaries. Upper shelf energy was higher and energy transition temperature was lower at the surface positon, where fine bainitic microstructure with homogeneously distributed fine carbides were present. Toward the center, coarse upper bainite and precipitation of coarse inter-lath carbides were observed, which deteriorated impact properties. At the 1/4T position, the Charpy impact properties were worse than those at other positions owing to the combination of elongated-coarse inter-lath carbides and large effective grain size.  相似文献   
3.
Pattern Analysis and Applications - Customer-voice data have an important role in different fields including marketing, product planning, and quality assurance. However, owing to the manual...  相似文献   
4.
Effects of Mn addition (17, 19, and 22 wt pct) on tensile and Charpy impact properties in three austenitic Fe-Mn-C-Al-based steels were investigated at room and cryogenic temperatures in relation with deformation mechanisms. Tensile strength and elongation were not varied much with Mn content at room temperature, but abruptly decreased with decreasing Mn content at 77 K (?196 °C). Charpy impact energies at 273 K (0 °C) were higher than 200 J in the three steels, but rapidly dropped to 44 J at 77 K (?196 °C) in the 17Mn steel, while they were higher than 120 J in the 19Mn and 22Mn steels. Although the cryogenic-temperature stacking fault energies (SFEs) were lower by 30 to 50 pct than the room-temperature SFEs, the SFE of the 22Mn steel was situated in the TWinning-induced plasticity regime. In the 17Mn and 19Mn steels, however, α′-martensites were formed by the TRansformation-induced plasticity mechanism because of the low SFEs. EBSD analyses along with interrupted tensile tests at cryogenic temperature showed that the austenite was sufficiently deformed in the 19Mn steel even after the formation of α′-martensite, thereby leading to the high impact energy over 120 J.  相似文献   
5.
Interleukin-7 (IL-7) is a multipotent cytokine that maintains the homeostasis of the immune system. IL-7 plays a vital role in T-cell development, proliferation, and differentiation, as well as in B cell maturation through the activation of the IL-7 receptor (IL-7R). IL-7 is closely associated with tumor development and has been used in cancer clinical research and therapy. In this review, we first summarize the roles of IL-7 and IL-7Rα and their downstream signaling pathways in immunity and cancer. Furthermore, we summarize and discuss the recent advances in the use of IL-7 and IL-7Rα as cancer immunotherapy tools and highlight their potential for therapeutic applications. This review will help in the development of cancer immunotherapy regimens based on IL-7 and IL-7Rα, and will also advance their exploitation as more effective and safe immunotherapy tools.  相似文献   
6.
7.
For the development of wearable electronics, the replacement of rigid, metallic components with fully elastomeric materials is crucial. However, current elastomeric electrodes suffer from low electrical conductivity and poor electrical stability. Herein, a metal-like conductive elastomer with exceptional electrical performance and stability is presented, which is used to fabricate fully elastomeric electronics. The key feature of this material is its wrinkled structure, which is induced by in situ cooperation of solvent swelling and densely packed nanoparticle assembly. Specifically, layer-by-layer assembly of metal nanoparticles and small-molecule linkers on elastomers generates the hierarchical wrinkled elastomer. The elastomer demonstrates remarkable electrical conductivity (170 000 and 11 000 S cm−1 at 0% and 100% strain, respectively), outperforming previously reported elastomeric electrodes based on nanomaterials. Furthermore, a fully elastomeric triboelectric nanogenerator based on wrinkled elastomeric electrode exhibits excellent electric power generation performance due to the compressible, large contact area of the wrinkled surface during periodic contact and separation.  相似文献   
8.
We aimed to determine the effects of Lactobacillus strains against rotaviral infections. Rotaviruses are the major causative agent of acute gastroenteritis in infants and children worldwide. However, to date, no specific antiviral drugs for the treatment of rotavirus infection have been developed. We identified 263 Lactobacillus strains from 35 samples of the traditional Korean fermented vegetable food kimchi. Among them, Lactobacillus plantarum LRCC5310, more specifically the exopolysaccharides produced by these cells, were shown to have an antiviral effect against human rotavirus Wa strain in vitro. In vivo, the oral administration of exopolysaccharides for 2 d before and 5 d after mouse infection with the murine rotavirus epidemic diarrhea of infant mice strain led to a decrease in the duration of diarrhea and viral shedding and prevented the destruction of enteric epithelium integrity in the infected mice. We demonstrated here that the exopolysaccharides extracted from L. plantarum LRCC5310 can be used for the effective control of rotavirus infection.  相似文献   
9.
This paper proposes an omni-directional walking pattern generation method for a humanoid robot MAHRU-R. To walk stably without falling down, a humanoid robot needs the walking pattern. Our previous walking pattern method generated the walking pattern with linear polynomials of the zero moment point (ZMP). It implemented the simple walking like forward/backward walking, side step walking and turning. However, this method was not sufficient to satisfy the various walking which is combined by forward/backward walking, side step walking and turning. We needed to upgrade the walking pattern generation method to implement an omni-directional walking. We use the linear inverted pendulum model consisted of ZMP and center of mass in order to simplify the computation of walking pattern. The proposed method assumes that the state of the following stride is same to the state of the current stride. Using this assumption of walking pattern, the proposed method generates the stable walking pattern for various walking. And the proposed scheme generates the ZMP trajectory with the quartic polynomials in order to reduce the fluctuation of ZMP trajectory by various walking. To implement the efficient walking pattern, this method proposes three walking modules: periodic step module, transient step module and steady step module. Each step module utilizes weighted least square method with future ZMP position information. The effectiveness of the proposed method is verified by simulations of various walking. And the proposed method is confirmed by the experiment of real humanoid robot MAHRU-R.  相似文献   
10.
Free energy surfaces, calculated during computer simulations, are known to be useful in characterizing the system of interest such as bio-molecules. However, it is usually very difficult to evaluate free energy from direct simulations, mainly because of high computational costs. Several simulation strategies, including replica exchange method (REM), have been developed to overcome this problem by providing efficient conformational sampling methods. Even with such efficient simulation schemes, fundamental questions concerning simulation convergence still remain to be resolved. In this paper, we propose to use a meta-distance between different free energy surfaces as one of the minimal measures for determining simulation consistency. This method is used for examining free energy surfaces obtained from folding simulations of a synthetic 11-residue protein (1AQG) using REM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号