首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学工业   14篇
金属工艺   1篇
机械仪表   1篇
无线电   2篇
一般工业技术   2篇
自动化技术   5篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
In this paper, an instrumentation of the Earth's field nuclear magnetic resonance (EFNMR) inside a laboratory is presented. A lock-in analysis (LIA) technique was proposed to enhance the signal-to-noise ratio (SNR). A SNR of 137.8 was achieved in a single measurement for 9 ml tap water, and the LIA technique significantly enhanced the SNR to 188 after a 10-average in a noisy laboratory environment. The proton-phosphorus coupling in trimethyl phosphate ((CH(3)O)(3)PO) with J-coupling J[H,F]=(10.99±0.013)?Hz has been demonstrated. The LIA technique improves the SNR, and a 2.6-fold improvement in SNR over that of the frequency-adjusted averaging is achieved. To reduce the noise in EFNMR, it was suggested that the LIA technique and the first order gradient shim be used to achieve a subhertz linewidth.  相似文献   
2.
In this paper, we present a new “spatiotemporal multicast”, called a “mobicast”, protocol for supporting applications which require spatiotemporal coordination in sensornets. The spatiotemporal character of a mobicast is to forward a mobicast message to all sensor nodes that will be present at time t in some geographic zone (called the forwarding zone) Z, where both the location and shape of the forwarding zone are a function of time over some interval (t start ,t end ). The mobicast is constructed of a series of forwarding zones over different intervals (t start ,t end ), and only sensor nodes located in the forwarding zone in the time interval (t start ,t end ) should be awake in order to save power and extend the network lifetime. Existing protocols for a spatiotemporal variant of a multicast system were designed to support a forwarding zone that moves at a constant velocity, , in sensornets. To consider the path of a mobile entity which includes turns, this work mainly develops a new mobicast routing protocol, called the variant-egg-based mobicast (VE-mobicast) routing protocol, by utilizing the adaptive variant-egg shape of the forwarding zone to achieve high predictive accuracy. To illustrate the performance achievement, a mathematical analysis is conducted and simulation results are examined. Yuh-Shyan Chen received the M.S. and Ph.D. degrees in Computer Science and Information Engineering from the National Central University, Taiwan, Republic of China, in June 1991 and Jan. 1996, respectively. He joined the faculty of Department of CSIE, Chung-Hua University, Taiwan, in 1996. He joined the Department of Statistic, National Taipei University in Aug. 2000, and joined the Department of CSIE, National Chung Cheng University in Aug. 2002. Dr. Chen is an associate Professor from Aug. 2003. Since 2006, he has been a Professor at the Department of CSIE, National Taipei University, Taiwan. Dr. Chen served as Co-Editors-in-Chief of International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC); Editorial Board Member of Telecommunication System; Guest Editor of Telecommunication Systems, special issue on “Wireless Sensor Networks” (2004). He was a Vice Co-Chair, Wireless IP Symposium of WirelressCOM, USA (2005); Workshop Co-Chair, IEEE AHUC06, Taiwan (2006); Program Co-Chairs, IFIP NCUS06, Korea (2006). Dr. Chen also served as Program Committee Member of ICPP’03, ICDCS’04, ICCCN’01–06, MSN’05, CCN’02–06, CSA’04 06, NCS’06, MSEAT’03–06, WASN06, USN06, MHNET06, PESYS06, ML06, IWWN06, UIC06, ICWMC06, and HWN-RMQ06; IASTED Technical Committee on Telecommunications (2002–2005); WSEAS International Scientific Committee Member (from 2004). His paper wins the 2001 IEEE 15th ICOIN-15 Best Paper Award. Dr. Chen was a recipient of the 2005 Young Scholar Research Award given by National Chung Cheng University to four young faculty members, 2005. His recent research topics include mobile ad-hoc network, wireless sensor network, and 4G system. Dr. Chen is a member of the IEEE Computer Society and Phi Tau Phi Society. Shin-Yi Ann received the B.S. degree in computer science and engineering from the National Taiwan Ocean University, Taiwan, Republic of China, in June 2002 and the M.S. degree in computer science and information engineering from National Chung Cheng University, Taiwan, Republic of China, in July 2004. His research interest includes wireless sensor network. Yun-Wei Lin received the B.S. degree in computer and information science from the Aletheia University, Taiwan, Republic of China, in June 2003 and the M.S. degree in computer science and information engineering from National Chung Cheng University, Taiwan, Republic of China, in July 2005. His research interests include mobile ad hoc network and wireless sensor network.  相似文献   
3.
β-Fructofuranosidase (EC 3.2.1.26) in Aspergillus japonicus mycelium was immobilized by entrapment in calcium alginate gel. After immobilization, the enzyme was active over a wider pH range, and had improved thermostability. The total amount of fructooligosaccharides produced by immobilized enzyme was similar to that produced by a free enzyme system. A packed-bed reactor was employed for production of fructooligosaccharides at 42°C using the immobilized enzyme. The reactions were continued for 35 days and only 17% of enzyme activity was lost during this period.  相似文献   
4.
This study evaluated the memristive switching characteristics of a biomaterial solid polymer electrolyte (SPE) chitosan-based memristor and confirmed its artificial synaptic behavior with analog switching. Despite the potential advantages of organic memristors for high-end electronics, the unstable multilevel states and poor reliability of organic devices must be overcome. The fabricated Ti/SPE-chitosan/Pt-structured memristor has stable bipolar resistive switching (BRS) behavior due to a cation-based electrochemical reaction between a polymeric electrolyte and metal ions and exhibits excellent endurance in 5 × 102 DC cycles. In addition, we achieved multilevel per cell (MLC) BRS I-V characteristics by adjusting the set compliance current (Icc) for analog switching. The multilevel states demonstrated uniform resistance distributions and nonvolatile retention characteristics over 104 s. These stable MLC properties are explained by the laterally intensified conductive filaments in SPE-chitosan, based on the linear relationship between operating voltage margin (ΔVswitching) and Icc. In addition, the multilevel resistance dependence on Icc suggests the capability of continuous analog resistance switching. Chitosan-based SPE artificial synapses ensure the emulation of short- and long-term plasticity of biological synapses, including excitatory postsynaptic current, inhibitory postsynaptic current, paired-pulse facilitation, and paired-pulse depression. Furthermore, the gradual conductance modulations upon repeated stimulation by 104 electric pulses were evaluated in high stability.  相似文献   
5.
In response to the thriving development in electronic commerce (EC), many on-line retailers have developed Web-based information systems to handle enormous amounts of transactions on the Internet. These systems can automatically capture data on the browsing histories and purchasing records of individual customers. This capability has motivated the development of data-mining applications. Sequential pattern mining (SPM) is a useful data-mining method to discover customers’ purchasing patterns over time. We incorporate the recency, frequency, and monetary (RFM) concept presented in the marketing literature to define the RFM sequential pattern and develop a novel algorithm for generating all RFM sequential patterns from customers’ purchasing data. Using the algorithm, we propose a pattern segmentation framework to generate valuable information on customer purchasing behavior for managerial decision-making. Extensive experiments are carried out, using synthetic datasets and a transactional dataset collected by a retail chain in Taiwan, to evaluate the proposed algorithm and empirically demonstrate the benefits of using RFM sequential patterns in analyzing customers’ purchasing data.  相似文献   
6.
A remarkable synergetic effect between the multi-graphene platelets (MGPs) and multi-walled carbon nanotubes (MWCNTs) in improving the mechanical properties and thermal conductivity of epoxy composites is demonstrated. Stacking of individual two-dimensional MGPs is effectively inhibited by introducing one-dimensional MWCNTs. Long and tortuous MWCNTs can bridge adjacent MGPs and inhibit their aggregation, resulting in a high contact area between the MGP/MWCNT structures and the polymer matrix. Scanning electron microscope images of the fracture surfaces of the epoxy matrix showed that MWCNT/MGP hybrid nanofillers exhibited higher solubility and better compatibility than individual MWCNTs and MGPs did. The tensile strength of GD400-MWCNT/MGP/epoxy composites was 35.4% higher than that of the epoxy alone, compared to only a 0.9% increase in tensile strength for MGP/epoxy composites over the epoxy compound. Thermal conductivity increased by 146.9% using GD400-MWCNT/MGP hybrid fillers and 23.9% for MGP fillers, compared to non-derivatised epoxy.  相似文献   
7.
A method of integrating hybrid thin films of graphene nanosheets (GNSs) and silver nanoparticles (AgNps) by in situ chemical reduction to prepare transparent conductive films (TCFs) is studied. The surface functional groups of graphite oxide (GO) serve as nucleation sites of silver ions for adsorption of AgNps. To fabricate conductive films with high transmittance, polyurethane (PU) nanofibers are introduced to help construct two-dimensional conductive networks consisting of AgNps and GNSs (AgNps–GNSs). This method requires only a low percentage of conducting AgNps–GNSs covering the transparent substrate, thereby improving the transmittance. The flexible GNSs serve as nanoscale bridges between conductive AgNps and PU nanofibers, resulting in a highly flexible TCF. The optical transmittance can be further increased after melting the PU nanofibers at 100 °C. A fused film obtained after electrospinning (ES) a PU solution for 120 s and immersion in 0.05 wt.% AgNp–GNS (5:1) solution has a surface resistance of 150 Ω/sq and 85% light transmittance. Mechanical testing shows that AgNps–GNSs on flexible substrates yield excellent robustness. Thus, TCFs with a 3:1 ratio of AgNps:GNSs have high conductivity, good mechanical durability, and barely one order of magnitude increase of surface resistance when bent to an angle of 90°.  相似文献   
8.
Aggregation and restacking of graphene nanosheets (GNS) can be efficiently inhibited by decorating the silver nanoparticles on the surface of GNS to form GNS/silver (GNS-Ag) composites, which can construct high transparent and electrically conductive thin films. Silver nanoparticles act as a useful nanospacer and conductor, which not only increase the interlayer distance but also improve the electrical conductivity between layers. A two-step reduction process using sodium borohydride and ethylene glycol was also demonstrated reducing graphene oxide to GNS efficiently. The GNS-Ag composite films showed a maximum sheet resistance of 93 Ω□−1, while maintaining up to 78% light transmittance, which was two order of magnitude lower than that of GNS (8.2 × 103 Ω□−1, 81%), and the value of DC conductivity to optical conductivity ratio was 13.5 instead of 0.25.  相似文献   
9.
Huang YL  Baji A  Tien HW  Yang YK  Yang SY  Ma CC  Liu HY  Mai YW  Wang NH 《Nanotechnology》2011,22(47):475603
A simple method was developed to assemble graphite oxide (GO) densely onto electrospun (ES) polyamide 66 (PA66) nanofibrous membranes, used as a guide for the deposition of graphene nanosheet (GNS) conductive networks for preparing transparent conductive thin film (TCF). The main advantage of this technique by comparison with previous methods is that graphene does not form a uniform coating, but a percolated conductive network, when guided by PA66 nanofiber templates. A low surface coverage of the transparent substrate by GNS resulted in high transmittance. Polyvinylpyrrolidone-stabilized GO (PVP-GO) was prepared as a modifier for improving the adsorption to the nanofibers. The resulting PVP-GO material could adsorb well on PA66 nanofibers due to stronger hydrogen bonds. Hence, a lower sufficient concentration of PVP-GO (0.050 wt%) solution was required than that for GO solution (0.100 wt%) to fabricate a complete conductive path through a possible enriched adsorption process. For TCF applications, a reduction step is essential because as-deposited GO is non-conductive. In this work, we reduced GO to GNS by a combination of chemical reduction and thermal annealing. The TCF optical transmittance also could be improved after thermal annealing at 350?°C above the PA66 melting point. Light scattering by PA66 nanofibers was found as the main cause of reduced transmittance. A fused film, obtained after electrospinning PA66 solution for 120 s, and immersing in 0.050 wt% PVP-GO solution, exhibits a surface resistance of 8.6 × 103 Ω/square, while maintaining 88% light transmittance.  相似文献   
10.
For rapid and unlimited cell growth and proliferation, cancer cells require large quantities of nutrients. Many metabolic pathways and nutrient uptake systems are frequently reprogrammed and upregulated to meet the demand from cancer cells, including the demand for lipids. The lipids for most adult normal cells are mainly acquired from the circulatory system. Whether different cancer cells adopt identical mechanisms to ensure sufficient lipid supply, and whether the lipid demand and supply meet each other, remains unclear, and was investigated in lung cancer cells. Results showed that, despite frequent upregulation in de novo lipogenesis and the lipid transporter system, different lung cancer cells adopt different proteins to acquire sufficient lipids, and the lipid supply frequently exceeds the demand, as significant amounts of lipids stored in the lipid droplets could be found within lung cancer cells. Lipid droplet surface protein, PLIN3, was found frequently overexpressed since the early stage in lung cancer tissues. Although the expression is not significantly associated with a specific gender, age, histology type, disease stage, and smoking habit, the frequently elevated expression of PLIN3 protein indicates the importance of lipid droplets for lung cancer. These lipid droplets are not only for nutrient storage, but are also crucial for tumor growth and proliferation, as well as survival in starvation. These results suggest that manipulation of lipid droplet formation or TG storage in lung cancer cells could potentially decrease the progression of lung cancer. Further exploration of lipid biology in lung cancer could help design novel treatment strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号