首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
无线电   5篇
自动化技术   9篇
  2017年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   5篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
We focus on problems suited to the current evaluation infrastructure. The current limitation and trends in evaluation techniques are troublesome and could noticeably slow the rate of computer system innovation. New research has been recommended to help and make quantitative evaluations of computer systems manageable. We support research in the areas of simulation frameworks, benchmarking methodologies, analytic methods, and validation techniques.  相似文献   
2.
HotSpot: a compact thermal modeling methodology for early-stage VLSI design   总被引:3,自引:0,他引:3  
This paper presents HotSpot-a modeling methodology for developing compact thermal models based on the popular stacked-layer packaging scheme in modern very large-scale integration systems. In addition to modeling silicon and packaging layers, HotSpot includes a high-level on-chip interconnect self-heating power and thermal model such that the thermal impacts on interconnects can also be considered during early design stages. The HotSpot compact thermal modeling approach is especially well suited for preregister transfer level (RTL) and presynthesis thermal analysis and is able to provide detailed static and transient temperature information across the die and the package, as it is also computationally efficient.  相似文献   
3.
This paper introduces alloyed prediction, a new hardware-based two-level branch predictor organization that combines global and local history in the same structure, combining the advantages of current two-level predictors with those of hybrid predictors. The alloyed organization is motivated by measurements showing that wrong-history mispredictions are even more important than conflict-induced mispredictions. Wrong-history mispredictions arise because current two-level, history-based predictors provide only global or only local history. The contribution of wrong history to the overall misprediction rate is substantial because most programs have some branches that require global history and others that require local history. This paper explores several ways to implement alloyed prediction, including the previously proposed bi-mode organization. Simulations show that mshare is the best alloyed organization among those we examine, and that mshare gives reliably good prediction compared to bimodal (two-bit), two-level, and hybrid predictors. The robust performance of alloying across a range of predictor sizes stems from its ability to attack wrong-history mispredictions at even very small sizes without subdividing the branch prediction hardware into smaller and less effective components.  相似文献   
4.
The increasing computational needs of parallel applications inevitably require portability across parallel architectures, which now include heterogeneous processing resources, such as CPUs and GPUs, and multiple SIMD/SIMT widths. However, the lack of a common parallel programming paradigm that provides predictable, near-optimal performance on each resource leads to the use of low-level frameworks with architecture-specific optimizations, which in turn cause the code base to diverge and makes porting difficult. Our experiences with parallel applications and frameworks lead us to the conclusion that achieving performance portability requires a common set of high-level directives and efficient mapping onto each architecture.  相似文献   
5.
Thermal effects are becoming a limiting factor in high-performance circuit design due to the strong temperature dependence of leakage power, circuit performance, IC package cost, and reliability. While many interconnect reliability models assume a constant temperature, this paper analyzes the effects of temporal and spatial thermal gradients on interconnect lifetime in terms of electromigration, and presents a physics-based dynamic reliability model which returns reliability equivalent temperature and current density that can be used in traditional reliability analysis tools. The model is verified with numerical simulations and reveals that blindly using the maximum temperature leads to too pessimistic lifetime estimation. Therefore, the proposed model not only increases the accuracy of reliability estimates, but also enables designers to reclaim design margin in reliability-aware design. In addition, the model is useful for improving the performance of temperature-aware runtime management by modeling system lifetime as a resource to be consumed at a stress-dependent rate  相似文献   
6.
Iterative stencil loops (ISLs) are used in many applications and tiling is a well-known technique to localize their computation. When ISLs are tiled across a parallel architecture, there are usually halo regions that need to be updated and exchanged among different processing elements (PEs). In addition, synchronization is often used to signal the completion of halo exchanges. Both communication and synchronization may incur significant overhead on parallel architectures with shared memory. This is especially true in the case of graphics processors (GPUs), which do not preserve the state of the per-core L1 storage across global synchronizations. To reduce these overheads, ghost zones can be created to replicate stencil operations, reducing communication and synchronization costs at the expense of redundantly computing some values on multiple PEs. However, the selection of the optimal ghost zone size depends on the characteristics of both the architecture and the application, and it has only been studied for message-passing systems in distributed environments. To automate this process on shared memory systems, we establish a performance model using NVIDIA’s Tesla architecture as a case study and propose a framework that uses the performance model to automatically select the ghost zone size that performs best and generate appropriate code. The modeling is validated by four diverse ISL applications, for which the predicted ghost zone configurations are able to achieve a speedup no less than 95% of the optimal speedup.  相似文献   
7.
Temperature-aware computer systems: Opportunities and challenges   总被引:1,自引:0,他引:1  
Temperature-aware design techniques have an important role to play in addition to traditional techniques like power-aware design and package- and board-level thermal engineering. The authors define the role of architecture techniques and describe hotspot, an accurate yet fast thermal model suitable for computer architecture research.  相似文献   
8.
This paper presents a compact thermal modeling (CTM) approach, which is fully parameterized according to design geometries and material physical properties. While most compact modeling approaches facilitate thermal characterization of existing package designs, our method is better suited for preliminary exploration of the design space at both the silicon level and the package level. We show that our modeling method achieves reasonable boundary condition independence (BCI) by comparing a CTM example with a BCI model for a benchmark ball grid array single-chip package under the same standard set of boundary conditions. In essence, the presented CTM method can act as a convenient medium for enhanced interactions and collaborations among designers at the package, circuit and computer architecture levels, leading to efficient early evaluations of different thermally-related design trade-offs at all the above levels of abstraction before the actual detailed design is available. The presented modeling method can be easily extended to model emerging packaging schemes such as stacked chip-scale packaging and three-dimensional integration.  相似文献   
9.
This paper presents a novel type of high-speed and area-efficient register-based transpose memory architecture enabled by reporting on both edges of the clock. The proposed new architecture, by using the double-edge triggered registers, doubles the throughput and increases the maximum frequency by avoiding some of the combinational circuit used in prior work. The proposed design is evaluated with both FPGA and ASIC flow in 28/32nm technology. The experimental results show that the proposed memory achieves almost 4X improvement in throughput while consuming 46 % less area with the FPGA implementations compared to prior work. For ASIC implementations, it achieves more than 60 % area reduction and at least 2X performance improvement while burning 60 % less power compared to other register-based designs implemented with the same flow. As an example, a proposed 8X8 transpose memory with 12-bit input/output resolution is able to achieve a throughput of 107.83Gbps at 647MHz by taking only 140 slices on a Virtex-7 Xilinx FPGA platform, and achieve a throughput of 88.2Gbps at 529MHz by taking 0.024mm 2 silicon area for ASIC. The proposed transpose memory is integrated in both 2D-DCT and 2D-IDCT blocks for signal processing applications on the same FPGA platform. The new architecture allows a 3.5X speed-up in performance for the 2D-DCT algorithm, compared to the previous work, while consuming 28 % less area, and 2D-IDCT achieves a 3X speed-up while consuming 20 % less area.  相似文献   
10.
This paper describes a thermal-modeling approach that is easy to use and computationally efficient for modeling thermal effects and thermal-management techniques at the processor architecture level. Our approach is based on modeling thermal behavior of the microprocessor die and its package as a circuit of thermal resistances and capacitances that correspond to functional blocks at the architecture level. This yields a simple compact model, yet heat dissipation within all major functional blocks and the heat flow among blocks and through the package are accounted for. The model is parameterized, boundary- and initial-conditions independent, and is derived by a structure assembly approach. The architecture community has demonstrated growing interest in thermal management, but currently lacks a way to model on-chip temperatures in a tractable way. Our model can be used for initial exploration of the design space at the architecture level. The model can easily be integrated into popular power/performance simulators, can be used to determine how thermal stress is correlated to the architecture, and how architecture-level design decisions influence thermal behavior and related effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号