首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
化学工业   14篇
金属工艺   1篇
能源动力   1篇
轻工业   2篇
无线电   3篇
一般工业技术   6篇
冶金工业   2篇
自动化技术   6篇
  2021年   4篇
  2020年   3篇
  2019年   6篇
  2018年   7篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  1999年   1篇
  1994年   1篇
  1991年   1篇
  1984年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
2.
A real-time current controller for PWM inverter-fed permanent-magnet synchronous motor drives is presented and analyzed. The proposed current control scheme is based on predictive control with a parallel integral loop added to compensate for the inaccuracy of the motor model and for the variations of motor parameters and DC voltage source. The proposed current control scheme is analyzed and its performance is evaluated by computer simulation. An EPROM-based implementation is presented in which calculations and pulsewidth modulation are executed by lookup tables resulting in high-speed operation. The controller performance is evaluated using a prototype l kW PM synchronous servo drive. Experimental results are given and discussed  相似文献   
3.
Two phase-based nanocomposites consisting of dielectric barium titanate (BaTiO3 or BTO) and magnetic spinel ferrite Co0.5Ni0.5Nb0.06Fe1.94O4 (CNNFO) have been synthesized through solid state route. Series of (BaTiO3)1-x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites with x content of 0.00, 0.25, 0.50, 0.75, and 1.00 were considered. The structure has been examined via X-rays diffraction (XRD) and indicated the occurrence of both perovskite BTO and spinel CNNFO phases in various nanocomposites. A phase transition from tetragonal BTO structure to cubic structure occurs with inclusion of CNNFO phase. The average crystallites size of BTO phase decreases, whereas that for the CNNFO phase increases with increasing x in various nanocomposites. The morphological observations revealed that the porosity is highly reduced, and the connectivity between grains is enhanced with increasing x content. The optical properties have been investigated by UV−vis diffuse reflectance spectroscopy. The deduced band gap energy (Eg) value is found to reduce with increasing the content of spinel ferrite phase. The magnetic as well as the dielectric properties were also investigated. The analysis showed that CNNFO ferrite phase greatly affects the magnetic properties and dielectric response of BTO material. The obtained findings can be useful to enhance the performances of magneto-dielectric composite-based systems.  相似文献   
4.
The formation of macropores in silicon during electrochemical etching processes has attracted much interest. Experimental evidences indicate that charge transport in silicon and in the electrolyte should realistically be taken into account in order to be able to describe the macropore morphology. However, up to now, none of the existing models has the requested degree of sophistication to reach such a goal. Therefore, we have undertaken the development of a mathematical model (phase-field model) to describe the motion and shape of the silicon/electrolyte interface during anodic dissolution. It is formulated in terms of the fundamental expression for the electrochemical potential and contains terms which describe the process of silicon dissolution during electrochemical attack in a hydrofluoric acid (HF) solution. It should allow us to explore the influence of the physical parameters on the etching process and to obtain the spatial profiles across the interface of various quantities of interest, such as the hole concentration, the current density, or the electrostatic potential. As a first step, we find that this model correctly describes the space charge region formed at the silicon side of the interface.  相似文献   
5.
In this work a special regard is given to the morphology of the nickel deposited layers, onto AA1370 aluminum section and central longitudinal surfaces, with and without a weak magnetic field oriented in parallel and perpendicular to the coated surface in modified Watt bath. The obtained results show the formation of honeycomb structure nickel deposits for samples treated with weak parallel oriented field under approximately 0.3 A/cm2, and partial dendritic structure nickel deposit for samples treated with weak perpendicular oriented magnetic field, the perimeter deposits with and without magnetic field is different to the deposits in the remain surface. We attributed the defect of nickel deposits on the surfaces with and without magnetic field to the distribution of the intermetallics particles and we attributed the honeycomb structure to the escapement of hydrogen and oxygen.  相似文献   
6.
Vanadium ions substituted BaFe12O19 nanohexaferrites, BaFe12-xVxO19 (0.0?≤x?≤?0.1), were produced through the sol-gel auto-combustion route. The structure, morphology and the elemental compositions of various products were examined using X–ray powder diffraction, scanning electron microscopy coupled with EDX and EDS elemental mapping. These techniques confirmed the formation of the desired Ba-nanohexaferrite phases. The crystallites size was found to be 55–58?nm range for all products. The magnetic properties of BaFe12-xVxO19 nanohexaferrites were investigated by Mossbauer spectroscopy, ZFC-FC magnetizations and AC susceptibility. The evolutions in the values of hyperfine magnetic field, isomer shift, quadrupole splitting, and line width were deduced via Mossbauer analysis. The experiments of ZFC and FC magnetizations indicated that no blocking temperature is observed in the temperature interval 2–400?K, which signals the typical ferromagnetic (FM) behavior for the produced nanohexaferrites. A super-spin glass like behavior is noticed at lower temperatures. The experiments AC susceptibility confirmed that the strength of magnetic interactions is enhanced for lower content of V3+ (x?=?0.02). For higher amount of V3+, the magnetic interactions are weakened. The obtained results are mainly accredited to the substitutions of Fe3+ ions by V3+ ions.  相似文献   
7.
Reduction in greenhouse effect gases emission is a major source of concern nowadays. Internal combustion engines, as the most widely used power generation mean for transportation, represent a large share of such gases, which motivates active research efforts for alternative solutions. In this regard, PEM fuel cells represent a promising prospect and are thoroughly investigated, whether experimentally or through numerical simulation. The present work presents a simulation of the power potential of a PEM fuel cell, which is integrated to the full power electric traction chain of a medium size car. The cell potential is modelled by taking into account the different types of polarization. The driving performances of the vehicle and its hydrogen consumption are evaluated through a simple mathematical model and an application is performed for the New European Driving Cycle (NEDC) standard driving cycle. A preliminary sizing of the proton exchange membrane fuel cell (PEMFC) membrane area for the chosen vehicle is presented, along with that of a hydrogen storage tank for a typical autonomy. The main goal of the simulation is to estimate CO2 indirect emissions due to the production of the needed hydrogen for the cycle via an electrolyser, compared with the case of a gasoline fueled vehicle. This is performed solely on a ‘fuel tank to wheel’ basis in order to have comparable figures. The results indicate that the environmental advantage of hydrogen cars is quite questionable if hydrogen is produced using carbon‐based energy sources. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
8.
Anodic dissolution of p-Si is studied in diluted fluoride solution (HF 0.05 M + NH4F 0.05 M, pH 3), with special focus on the physico-chemical parameters which govern the morphology of pore formation (crystallographic orientation, applied potential, and etching time). The effect of potential has been investigated in the transition region between macropore formation and electropolishing. Upon increasing the anodization potential, the pore cross-section changes from circular to square shape, and the bottom of the pores changes from a rounded to a V-shaped profile. Prolonged etching of the contour of (1 1 0) p-Si disks in the regime of porous silicon formation allows for a comparison of the etching characteristics of the orientations. SEM observation indicates indeed different morphologies as a function of the crystal orientation, and the formation of fractal-like structures is obtained for some orientations. In the same geometry and at a potential just above the onset of the electropolishing regime, prolonged anodization allows for a direct measurement of the Si thickness removed as a function of the crystallographic orientation. We clearly observe the etching anisotropy, with etch depth τ(1 1 1) < τ(1 1 0) < τ(1 0 0). This sequence, similar to that observed for current density in more concentrated HF, differs from that observed for the chemical etching of Si in an alkaline solution.  相似文献   
9.
Researchers have taken a prodigious consideration in characterizing and synthesizing zinc substituted cobalt ferrite nanoparticles because of their substantial applications across diverse technological and industrial fields. Zinc substituted cobalt ferrite nanoparticles are a class of lenient magnetic nanomaterials, which have potentially high magnetic, optical, electrical, and dielectric properties. These properties include a high value of permeability, low power losses, permittivity, saturation magnetization, coercivity, resistivity, and other beneficial properties that make them promise candidates for applications in various fields. These ferrites are also used in biomedical areas such as MRI and cancer treatments. In electronic fields, zinc substituted cobalt ferrite nanoparticles are used to make transducers, transformers, biosensors, and sensors. Apart from these advantages, they are found in our everyday electronic and electrical appliances like LED bulb, refrigerator, mobile charger, TV, microwave oven, juicer, washing machine, mixer, iron, printer, laptop, mobile, desktop, etc. Hence, the current review reports some properties of these spinel ferrites and emphasizes the different synthesis techniques that can be used to prepare them. Afterward, the impact of dopant on the materials' properties, the characterization techniques, and the momentous application in the present era have been well discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号