首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   2篇
化学工业   46篇
机械仪表   1篇
建筑科学   3篇
能源动力   1篇
轻工业   3篇
一般工业技术   9篇
冶金工业   1篇
自动化技术   8篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
排序方式: 共有72条查询结果,搜索用时 46 毫秒
1.
The changes in mechanical properties, the thermal stability, and the water absorption capacity of poly (vinyl chloride)/olive residue flour composites were studied as a function of various residue olive flour ratios, i.e., 0, 5, 15, and 25% by weight taking into account the effect of benzylation chemical treatment of the filler. The study showed that composite samples prepared with the untreated filler exhibited higher tensile modulus and hardness compared with the neat resin, whereas elongation and tensile strength were observed to decline. On the other hand, the PVC hardness was found to increase with addition of the untreated olive residue flour (ORF), however the composite samples prepared with the benzylated flour exhibited lower hardness than those prepared with untreated olive residue. Moreover, the amount of absorbed water depends on the amount of filler in the composite. The comparison of the results obtained from the samples of F5, F20, and F30 formulations between the untreated and treated ORF indicated a reduction in absorbed water for the composite samples containing treated ORF with benzyl chloride. As a result, the mechanical properties of the treated composites were improved. Furthermore, the thermal characterization of the different samples carried out by color change test and thermogravimetric analysis revealed an increase in the onset temperatures of decomposition for the treated composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
2.
In this paper we present a new application for a four variable refined plate theory to analyse the nonlinear cylindrical bending behavior of functionally graded plates subjected to thermomechanical loadings. This recent theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. The non-linear strain-displacement relations in the von Karman sense are used to study the effect of geometric non-linearity. The solutions are achieved by minimizing the total potential energy and the results are compared to the classical and the first-order theories reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving the nonlinear cylindrical bending behavior of functionally graded plates.  相似文献   
3.
Accelerated photooxidation under ultraviolet (UV) test of polyamide 11 (PA11) films filled with unmodified vermiculite clay at 5 wt% was investigated up to 600 h. Film samples of ~60‐μm thick were prepared by melt compounding using a cast extruder and exposed to UV light irradiation at λ > 295 nm. Fourier transform infrared (FTIR) spectra indicated similar structural changes occurring in both PA11 and PA11/unmodified vermiculite nanoclay (UVMC) nanocomposite along the photooxidation process, resulting in imides and carboxylic acids as the main carbonyl products. It was however observed that the formation rate of carbonyls in the PA11/UVMC nanocomposite was slower than neat PA11. This behavior is consistent with the yellowing index evolution determined by ultraviolet–visible (UV–vis) spectroscopy. Further, the photooxidation stability of the samples was also evaluated by the onset oxidation temperature determined by differential scanning calorimetry. The results indicated a better stability of the nanocomposite film than neat PA11, corroborating well the data obtained by FTIR and UV–vis techniques. POLYM. ENG. SCI., 59:2449–2457, 2019. © 2019 Society of Plastics Engineers  相似文献   
4.
5.
6.
7.
The asymmetry of halloysite surface chemistry was used to perform a selective modification of its inner surface via grafting of a synthesized styrene/(methacryloyloxy)methyl phosphonic acid copolymer. Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and pyrolysis gas chromatography/mass spectrometry were used to evidence and quantify the grafting. Then, raw and hybrid nanoparticles were incorporated in polystyrene (PS)/polyamide‐11 (PA11) blends (80/20 and 60/40 wt%). Scanning electron micrographs showed differences in localization of the halloysite nanotubes (HNTs), since raw halloysite is concentrated in the PA11 phase while modified halloysite is also located at the PS/PA11 interface, leading to a better interfacial adhesion between PS and PA11. An inhibiting effect of modified halloysite on PA11 coalescence was evidenced by measuring the particle size distribution of the extracted nodules. Moreover, the presence of modified halloysite at the interface shows an improvement in terms of thermal stability as observed by TGA, but with no significant effects on PA11 crystallization behaviour as shown by differential scanning calorimetry results. Rheological measurements were carried out to study the influence of the surface modification of halloysite on the blend morphology. A gel‐like behaviour was observed for the (60/40 wt%) HNTs reinforced composition that was enhanced in the case of 10% functionalized halloysite. © 2016 Society of Chemical Industry  相似文献   
8.
Melt‐state and solid state mechanical properties and thermal stability of polylactide layered silicate nanocomposites elaborated by melt intercalation were studied as a function of clay content. Wide angle X‐ray scattering results, transmission electron microscopy observations, and rheological measurements indicated that the clay was finely distributed in the polylactide matrix. Contrary to nonlinear mechanical properties, thermal and linear mechanical properties were shown to increase with increasing clay fraction. The nanoindentation measurements confirm the significant increase of linear mechanical properties previously observed by tensile tests. The good correlation of linear mechanical properties at the macrometric and nanometric scales is explained by the high dispersion degree of the nanofiller in the biodegradable polymer matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
9.
The hydrothermal ageing of wood‐flour‐filled PVC produced by dry‐blending in a high‐speed mixer in the presence of a plasticizer and other processing additives was carried out to investigate its thermal behaviour, and the results obtained were compared with those for the unfilled material. The dry‐blended compounds were prepared as films by a calendering process. The accelerated hydrothermal ageing was carried out by immersing the samples in boiling water at 100 °C for 110 h. The thermal behaviour of the reference and the aged samples in water was characterized by differential scanning calorimetry (DSC) and determination of the weight changes. The study has shown that during hydrothermal ageing, the samples from the whole formulations absorbed water, for instance, for 30 wt% filled PVC (F30), 16 wt% of water absorption was obtained, while this was only 2.2 wt% for unfilled PVC (F0). It was also noticed that the formulations filled with wood flour up to 10 wt% exhibited similar water absorption kinetics, i.e. the water was mostly absorbed during the first 50 h and the amount absorbed was less than 5 wt%. On the other hand, the 30 wt% filled samples regularly absorbed water up to almost 16 wt% after 100 h of immersion. The DSC data showed that hydrothermal ageing significantly affected the onset temperature of decomposition (Td) of the unfilled samples by decreasing this temperature from 228 to 215 °C. For the 30 wt% filled samples, only additive migration was observed, while the Td remained almost unchanged. Furthermore, from the DSC data, processability of the 30 wt% filled PVC samples at elevated temperatures, i.e. 180 to 200 °C was shown. Copyright © 2004 Society of Chemical Industry  相似文献   
10.
The Iosipescu shear test specimen geometry has been investigated by a number of research workers in recent years with conflicting results. The paper describes a numerical study of a compact shear test specimen, based on the Iosipescu geometry, which is proposed to investigate size effects in shear failure. A range of geometries has been studied and the extreme cases are reported. Results are presented for the largest absolute principal stresses together with a detailed study of the stresses between and around the roots of the two notches introduced in the test specimens. The results for the largest absolute principal stresses show that tensile stresses are created at the roots of the two notches. These tensile stresses may result in Mode I failure and probably account for the Mode I or mixed mode fracture observed in tests using the Iosipescu geometry. The results for the distribution of stresses between the roots of the two notches show that deep notches increase the likelihood of shear fracture prior to tensile failure. Shallow notches give a stress distribution similar to that developed in the indirect tensile test and hence tensile failure is likely to precede shear failure in such cases. Further numerical and experimental work is proposed.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号