首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
电工技术   1篇
化学工业   10篇
能源动力   1篇
无线电   3篇
一般工业技术   5篇
冶金工业   1篇
自动化技术   3篇
  2022年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   6篇
  2010年   2篇
  2007年   1篇
  2005年   1篇
排序方式: 共有24条查询结果,搜索用时 0 毫秒
1.
Employing first-principles density functional theory based calculations we investigated the change in electronic structure of CaCu3B4O12 compounds as one moves from 3d (Co) to 4d (Rh) to 5d (Ir) element at B site. Our study sheds light on valences of Cu and B ions as one moves from 3d to 4d to 5d based compounds. The valence of Cu in Co and Rh compound turn out to be that of less known 3+ state, while that in Ir compound turn out to be commonly known 2+ state. Our first-principles study provide microscopic understanding of these different valences of Cu, in terms of changes in the mixing of Cu x 2 − y 2 and B-a 1g states, driven by changes in the crystal field and spin splitting. The stronger crystal field splitting for 4d and 5d elements compared to 3d at B site drive the low-spin state at Rh and Ir site as opposed to intermediate spin in case of Co.  相似文献   
2.
Effect of silica doping on the densification and grain growth in zinc oxide   总被引:1,自引:0,他引:1  
The ability of silica (SiO2) in controlling the densification and grain growth behavior of nano crystalline zinc oxide (ZnO) has been systematically studied. It has been observed that SiO2 acts as a sintering inhibitor in the ZnO–SiO2 system up to 4 wt.% limiting value beyond which densification behavior of the system remains almost unchanged, especially above 1100 °C. The addition of SiO2 to ZnO retards grain growth which in turn results a finer ultimate grain size as compared to the undoped ZnO. However, stabilization in grain size occurs at ≥4 wt.% SiO2 addition. It has been observed that SiO2 incorporation changes the grain growth mechanism up to 4 wt.% addition, beyond which no remarkable changes was noticed. The grain growth (n) shows distinctly different slopes as a function of sintering time for the SiO2 doped ZnO systems than undoped ZnO. The different slopes tend to indicate that different diffusion mechanisms and probably the formation of a secondary phase (Zn–Si–O) at the grain boundary control the densification and grain growth. The thermal expansion coefficient of the system has been found to decrease substantially beyond 4 wt.% SiO2 addition to ZnO.  相似文献   
3.
The authors describe a low-power, battery-free tag for use in pervasive sensing applications such as wearable patient-monitoring systems and body sensor networks. The tag consists of a custom integrated circuit, an antenna for RF energy harvesting, and several sensors for monitoring important physiological parameters and generating alarms when necessary. They also describe experimental results with phonocardiogram and photoplethysmogram signals and demonstrate tag localization within 0.6 m by using an audio localization scheme.  相似文献   
4.
5.
Pulse oximeters are ubiquitous in modern medicine to noninvasively measue the percentage of oxygenated hemoglobin in a patient's blood by comparing the transmission characteristics of red and infrared light-emitting diode light through the patient's finger with a photoreceptor. We present an analog single-chip pulse oximeter with 4.8-mW total power dissipation, which is an order of magnitude below our measurements on commercial implementations. The majority of this power reduction is due to the use of a novel logarithmic transimpedance amplifier with inherent contrast sensitivity, distributed amplification, unilateralization, and automatic loop gain control. The transimpedance amplifier, together with a photodiode current source, form a high-performance photoreceptor with characteristics similar to those found in nature, which allows LED power to be reduced. Therefore, our oximeter is well suited for portable medical applications, such as continuous home-care monitoring for elderly or chronic patients, emergency patient transport, remote soldier monitoring, and wireless medical sensing. Furthermore, our design obviates the need for an A-to-D and digital signal processor and leads to a small single-chip solution. We outline how extensions of our work could lead to submilliwatt oximeters.   相似文献   
6.
A series of nanographene filled polystyrene (GPS) nanocomposites was prepared by in situ polymerization of styrene in the laboratory. The concentration of graphene was changed in the step of 0.25 wt% and a total of eight composites (including control) were prepared to obtain a threshold concentration of graphene. These composites, prepared by in situ polymerization followed by compression moulding, were characterized for their structural (using XRD), morphological (SEM), thermal (DSC, TGA, DTGA), dielectric behavior (ɛ', ɛ''') and DC conductivity. It was observed that the thermal stability as well as electrical and rheological properties of graphene‐polystyrene nanocomposites significantly improved due to the homogeneous dispersion, intercalation and exfoliation of the graphene layers in the Polystyrene matrix. It was also observed that at room temperature dielectric constant (ε′) decreased with increasing concentration of graphene and reached a minimum at a certain filler concentration of 0.25 wt% (PSG025) when frequency is kept constant. Rheological study showed an improvement in the storage modulus (G′) with incorporation of graphene as nanofiller. Loss modulus (G′) and complex viscosity (η*) also increased with increasing graphene weight percentage. Relaxation time also increased at high graphene loading because of the pseudo‐solid like behavior of polymer melt. POLYM. COMPOS., 34:2082–2093, 2013. © 2013 Society of Plastics Engineers  相似文献   
7.
8.
Objectives: The aim of the current research project was to investigate the effect of pressurized carbon dioxide (P-CO2) on the physico-mechanical properties of ketoprofen (KTP)-incorporated hydroxypropylcellulose (HPC) (Klucel? ELF, EF, and LF) produced using hot-melt extrusion (HME) techniques and to assess the plasticization effect of P-CO2 on the various polymers tested.

Methods: The physico-mechanical properties of extrudates with and without injection of P-CO2 were examined and compared with extrudates with the addition of 5% liquid plasticizer of propylene glycol (PG). The extrudates were milled and compressed into tablets. Tablet characteristics of the extrudates with and without injection of P-CO2 were evaluated.

Results and conclusion: P-CO2 acted as a plasticizer for tested polymers, which allowed for the reduction in extrusion processing temperature. The microscopic morphology of the extrudates was changed to a foam-like structure due to the expansion of the CO2 at the extrusion die. The foamy extrudates demonstrated enhanced KTP release compared with the extrudates processed without P-CO2 due to the increase of porosity and surface area of those extrudates. Furthermore, the hardness of the tablets prepared by foamy extrudates was increased and the percent friability was decreased. Thus, the good binding properties and compressibility of the extrudates were positively influenced by utilizing P-CO2 processing.  相似文献   
9.
With the emerging migration of automotive and other distributed control platforms from federated to integrated architectures, the need for optimal utilization of ECU (electronic control unit) bandwidth will become a key requirement in the implementation of embedded control features. This paper advocates the partitioning of the operating space of the plant and the use of minimal sampling rates in each partition without compromising the overall quality of control. At the heart of the proposed methodology are our algorithms that enable the choice of the partitions and the sampling rate for each partition. We demonstrate the efficacy of our methods on two case studies, namely an anti-lock braking system and a lane departure warning system. We also study the use of a supervisory controller that controls the switching among sampling rates for a combination of the two features.  相似文献   
10.
Poly-β-hydroxybutyrate (PHB) has been an effective biodegradable plastic obtained by microbial fermentation. Batch fermentation of Bacillus subtilis features an attractive system for the production of PHB. Identification of appropriate media components and cultivation conditions are extremely important for the optimal production of biomass and/or PHB production. Statistical media design was utilized for the optimization of different fermentation variables (glucose, peptone, sodium chloride, K2HPO4, KH2PO4, ammonium sulfate, ammonium chloride, sodium sulfate, temperature, inoculum size, and pH). The optimized media predicted the optimal dry cell weight of 7.54?g?L?1 and PHB production of 77.2?mg?L?1 at 1?g?L?1 of peptone, 1.46?g?L?1 sodium sulfate, and pH 6.8 in 24?h. Glucose utilization, batch growth, and PHB production kinetics of B. subtilis were determined experimentally. The effect of substrate inhibition on specific growth rate was also determined experimentally for B. subtilis. The values of kinetic and substrate inhibition parameters obtained from this study shall be utilized to develop a mathematical model for PHB production for further improving the production of PHB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号