首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
化学工业   11篇
轻工业   1篇
无线电   1篇
一般工业技术   3篇
冶金工业   1篇
自动化技术   1篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2006年   1篇
  2004年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有18条查询结果,搜索用时 125 毫秒
1.
We have investigated the switching behavior of as-deposited CrO x and post-annealed CrO y films by use of a variety of electrodes (top electrode Ag, Ti; bottom electrode Pt, fluorine tin oxide (FTO)). Resistance switching is highly dependent on electrode material and post-annealing treatment. Among Pt devices, IV hysteresis was observed for the Ag/CrO x /Pt device only; no resistance switching was observed for Ag/CrO y /Pt, Ti/CrO x /Pt, and Ti/CrO y /Pt devices. Among FTO devices, IV hysteresis was observed for the Ag/CrO x /FTO device whereas IV hysteresis with the opposite switching direction was observed for Ag/CrO y /FTO, Ti/CrO x /FTO, and Ti/CrO y /FTO devices. The direction of switching depends not only on electrode material but also on post-annealing treatment, which affects the density of grain boundaries. Thus, the density of grain boundaries determines the type of charge carrier involved in the switching process. For as-deposited CrO x films with a high density of grain boundaries Ag filament paths mediated by electrochemical redox reaction were observed, irrespective of bottom electrode material (Pt or FTO). Post-annealed CrO y films with a low density of grain boundaries suppressed electrochemical redox reaction in the Ag/CrO y /Pt device but promoted short-range movement of O2? ions through the bottom interface, resulting in resistance switching in the Ag/CrO y /FTO device. Electrochemical redox reaction-controlled resistance switching occurred solely in oxides with a high density of grain boundaries or dislocations.  相似文献   
2.
Pseudoazurin, a low molecular weight protein containing a singletype I copper, functions as an electron donor to a copper-containingnitrite reductase (NIR) in a denitrifying bacterium Alcaligenesfaecalis S-6. To elucidate the proteinprotein interaction betweenthese two copper-containing proteins, each of nine out of 13lysine residues on the surface of pseudoazurin were independentlyreplaced by alanine or aspartate, and the effects of the mutationson the interaction with NIR, as well as the physicochemicalproperties of pseudoazurin, were analyzed. All of the mutatedpseudoazurins showed optical spectra and oxidation-reductionpotentials almost identical to those of wildtype pseudoazurin,suggesting that none of the replacements of these lysine residuesaffected the environment around the type I copper site. Kineticanalysis of electron transfer between mutated pseudoazurinsand NIR reveals that the lysine mutations have very little effecton the rate of electron transfer to NIR, but substitution atresidues 10, 38, 57 and 77, all close to the copper site, substantiallydecreases the affinity of pseudoazurin for NIR. This suggeststhat pseudoazurin interacts with NIR through the region closeto the type I copper site. The refined X-ray structures of Lys38Aspand Lys10Asp/Lys38Asp show that the molecular structure hasindeed changed little. A new space group is observed for theLys109Ala mutant crystal. Crystal packing interactions changefor the Lys10Asp/Lys38Asp mutant but remain the same for Lys38Aspand Lys59Ala mutants.  相似文献   
3.
Delafossite CuAlO2 p-type nanostructured semiconductor was synthesized using boehmite (γ-AlOOH) nanorods loaded with copper(I) acetate [Cu(OAc)] as a precursor (nanoprecursor). Because Cu(OAc)-loaded γ-AlOOH nanorods are highly anisotropic, they tend to form inherent bunches consisting of several nanorods during the course of drying the nanoprecursor dispersion droplet on a solid substrate. By annealing the nanoprecursor at 1150 °C in air, a delafossite CuAlO2 polycrystal was successfully obtained as the dominant phase. The CuAlO2 polycrystal is found to exhibit the (1 1 0) crystal orientation. The crystalline anisotropy of CuAlO2, which is not usually attainable using conventional molecular precursors, is presumably originated in the anisotropic morphology of the nanoprecursor. The Seebeck coefficient, resistivity and thermal conductivity of the CuAlO2 polycrystal at 300 K were found to be +560 μV K−1, 1.3 Ω m and 19.4 W K−1 m−1, respectively, confirming the p-type nature of the CuAlO2 polycrystal.  相似文献   
4.
Abstract— A novel liquid‐crystal alignment method, diamond‐like carbon and ion beam alignment (DLC/IB) technology, was announced at the 2001 SID Symposium. And since December 2001, a new‐generation ion‐beam machine has been placed into the manufacturing line of IDTech. DLC/IB technology is mainly used for medical displays, which require a monochrome high‐density and super‐uniform display. We report on the latest developments of these advanced monochrome displays.  相似文献   
5.
The functional contributions of amino acid residues Thr218 andAsp304 of chymosin, both of which are highly conserved in theaspartic proteinases, are analysed by means of site-directedmutagenesis. The optimum pH values, milk-clotting (C) and proteolytic(P) activities and kinetic parameters for synthetic oligopeptidesas substrates were examined for the mutant enzymes. The mutationThr2l8Ser caused a marked increase in the C/P ratio, which seemedto be due to a change in substrate recognition. Although thenegative charge of Asp304 had been expected to play a role inlowering the optimum pH values in the aspartic proteinases,this turned out not to be the case in chymosin because boththe mutations Asp304Ala and Asp304Glu caused a similar shiftof the optimum pH towards the acidic side. In addition, themutation Lys220Leu, which we generated previously, was foundto cause a decrease in the C/P ratio, mainly due to the increasein the proteolytic activity.  相似文献   
6.
Gingerol derivatives are bioactive compounds isolated from the rhizome of ginger. They possess various beneficial activities, such as anticancer and hepatoprotective activities, and are therefore attractive targets of bioengineering. However, the microbial production of gingerol derivatives has not yet been established, primarily because the biosynthetic pathway of gingerol is unknown. Here, we report the production of several dehydrogingerdione (a gingerol derivative) analogues from a recombinant Escherichia coli strain that has an “artificial” biosynthesis pathway for dehydrogingerdione that was not based on the original biosynthesis pathway of gingerol derivatives in plants. The system consists of a 4‐coumarate:CoA ligase from Lithospermum erythrorhizon, a fatty acid CoA ligase from Oryza sativa, a β‐oxidation system from Saccharomyces cerevisiae, and a curcuminoid synthase from O. sativa. To our knowledge, this is the first report of the microbial production of a plant metabolite the biosynthetic pathway of which has not yet been identified.  相似文献   
7.
Core-shell magnetic nanoparticles have received significant attention recently and are actively investigated owing to their large potential for a variety of applications. Here, the synthesis and characterization of bimetallic nanoparticles containing a magnetic core and a gold shell are discussed. The gold shell facilitates, for example, the conjugation of thiolated biological molecules to the surface of the nanoparticles. The composite nanoparticles were produced by the reduction of a gold salt on the surface of pre-formed cobalt or magnetite nanoparticles. The synthesized nanoparticles were characterized using ultraviolet-visible absorption spectroscopy, transmission electron microscopy, energy dispersion X-ray spectroscopy, X-ray diffraction and super-conducting quantum interference device magnetometry. The spectrographic data revealed the simultaneous presence of cobalt and gold in 5.6±0.8 nm alloy nanoparticles, and demonstrated the presence of distinct magnetite and gold phases in 9.2±1.3 nm core-shell magnetic nanoparticles. The cobalt-gold nanoparticles were of similar size to the cobalt seed, while the magnetite-gold nanoparticles were significantly larger than the magnetic seeds, indicating that different processes are responsible for the addition of the gold shell. The effect on the magnetic properties by adding a layer of gold to the cobalt and magnetite nanoparticles was studied. The functionalization of the magnetic nanoparticles is demonstrated through the conjugation of thiolated DNA to the gold shell.  相似文献   
8.
Residue 75 on the flap, a beta hairpin loop that partially coversthe active site cleft, is tyrosine in most members of the asparticproteinase family. Site-directed mutagenesis was carried outto investigate the functional role of this residue in Rhizomucorpusilus pepsin, an aspartic proteinase with high milk-clottingactivity produced by the fungus Rhizomucor pusillus. A set ofmutated enzymes with replacement of the amino acid at position75 by 17 other amino acid residues except for His and Gly wasconstructed and their enzymatic properties were examined. Strongactivity, higher than that of the wild-type enzyme, was foundin the mutant with asparagine (Tyr75Asn), while weak but distinctactivity was observed in Tyr75Phe. All the other mutants showedmarkedly decreased or negligible activity, less than 1/1000of that of the wild-type enzyme. Kinetic analysis of Tyr75Asnusing a chromogenic synthetic oligopeptide as a substrate revealeda marked increase in kcat with slight change in Km, resultingin a 5.6-fold increase in kcat/km. When differential absorptionspectra upon addition of pepstatin, a specific inhibitor foraspartic proteinase, were compared between the wild-type andmutant enzymes, the wild-type enzyme and Tyr75Asn, showing strongactivity, had spectra with absorption maxima at 280, 287 and293 nm, whereas the others, showing decreased or negligibleactivity, had spectra with only two maxima at 282 and 288 nm.This suggests a different mode of the inhibitor binding in thelatter mutants. These observations suggest a crucial role ofthe residue at position 75 in enhancing the catalytic efficiencythrough affecting the mode of substrate-binding in the asparticproteinases.  相似文献   
9.
Fatty acyl-AMP ligases (FAALs) activate fatty acids as acyladenylates, and subsequently catalyze their transfer onto the acyl carrier proteins (ACPs) of polyketide synthases (PKSs) or nonribosomal peptide synthetases to produce lipidic metabolites. Myxococcus xanthus contains a polyketide biosynthesis gene cluster in which putative FAAL (FtpD) and ACP (FtpC) genes are located close to a type III PKS (FtpA) gene. Here we describe the characterization of these three proteins in vitro. FtpD adenylated stearic acid and produced stearoyl-FtpC. The stearoyl moiety was then transferred to FtpA. When extender substrates (malonyl-CoA and methylmalonyl-CoA) were added to the reaction, the alkylresorcinol 5-heptadecyl-4-methyl-benzene-1,3-diol was synthesized. Further in vitro analysis indicated that FtpA produces an alkylresorcylic acid as the direct product, and that this decarboxylates to alkylresorcinol nonenzymatically. This is the first report of a FAAL supplying a long-chain fatty acyl-ACP starter substrate to a type III PKS.  相似文献   
10.
A polyketide biosynthesis gene cluster (agq) was found on the genome of a rare actinomycete, Actinoplanes missouriensis. Streptomyces lividans expressing agqA encoding a type III polyketide synthase produced alkylresorcinols mainly from C(16-17) fatty acids. Heterologous expression of the agq genes in S. lividans indicated the function of cognate polyketide modification enzymes; a monooxygenase AgqB hydroxylates the alkylresorcinols to yield 6-alkyl-2-hydroxyhydroquinones, a methyltransferase AgqC catalyzes O-methylation of the alkyl-hydroxyhydroquinones to yield 6-alkyl-2-methoxyhydroquinones, and a UbiA-like prenyltransferase AgqD attaches a prenyl group to the C-4 hydroxy group of the alkyl-methoxyhydroquinones to yield 6-alkyl-4-O-geranyl-2-methoxyhydroquinones and 6-alkyl-4-O-dihydrofarnesyl-2-methoxyhydroquinones derived from C(16-17) fatty acids. In contrast, A. missouriensis was found to produce 6-alkyl-4-O-dihydrogeranyl-2-methoxyhydroquinones derived from C(16-18) fatty acids by the function of the agq gene cluster. All of these prenylated phenolic lipids were novel compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号