首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
无线电   2篇
自动化技术   4篇
  2014年   3篇
  2011年   2篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Anomaly detection in resource constrained wireless networks is an important challenge for tasks such as intrusion detection, quality assurance and event monitoring applications. The challenge is to detect these interesting events or anomalies in a timely manner, while minimising energy consumption in the network. We propose a distributed anomaly detection architecture, which uses multiple hyperellipsoidal clusters to model the data at each sensor node, and identify global and local anomalies in the network. In particular, a novel anomaly scoring method is proposed to provide a score for each hyperellipsoidal model, based on how remote the ellipsoid is relative to their neighbours. We demonstrate using several synthetic and real datasets that our proposed scheme achieves a higher detection performance with a significant reduction in communication overhead in the network compared to centralised and existing schemes.  相似文献   
3.
Two new incremental models for online anomaly detection in data streams at nodes in wireless sensor networks are discussed. These models are incremental versions of a model that uses ellipsoids to detect first, second, and higher‐ordered anomalies in arrears. The incremental versions can also be used this way but have additional capabilities offered by processing data incrementally as they arrive in time. Specifically, they can detect anomalies ‘on‐the‐fly’ in near real time. They can also be used to track temporal changes in near real‐time because of sensor drift, cyclic variation, or seasonal changes. One of the new models has a mechanism that enables graceful degradation of inputs in the distant past (fading memory). Three real datasets from single sensors in deployed environmental monitoring networks are used to illustrate various facets of the new models. Examples compare the incremental version with the previous batch and dynamic models and show that the incremental versions can detect various types of dynamic anomalies in near real time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
Anomaly detection in wireless sensor networks is an important challenge for tasks such as fault diagnosis, intrusion detection, and monitoring applications. The algorithms developed for anomaly detection have to consider the inherent limitations of sensor networks in their design so that the energy consumption in sensor nodes is minimized and the lifetime of the network is maximized. In this survey article we analyze the state of the art in anomaly detection techniques for wireless sensor networks and discuss some open issues for research.  相似文献   
5.
Comparing, clustering and merging ellipsoids are problems that arise in various applications, e.g., anomaly detection in wireless sensor networks and motif-based patterned fabrics. We develop a theory underlying three measures of similarity that can be used to find groups of similar ellipsoids in p-space. Clusters of ellipsoids are suggested by dark blocks along the diagonal of a reordered dissimilarity image (RDI). The RDI is built with the recursive iVAT algorithm using any of the three (dis) similarity measures as input and performs two functions: (i) it is used to visually assess and estimate the number of possible clusters in the data; and (ii) it offers a means for comparing the three similarity measures. Finally, we apply the single linkage and CLODD clustering algorithms to three two-dimensional data sets using each of the three dissimilarity matrices as input. Two data sets are synthetic, and the third is a set of real WSN data that has one known second order node anomaly. We conclude that focal distance is the best measure of elliptical similarity, iVAT images are a reliable basis for estimating cluster structures in sets of ellipsoids, and single linkage can successfully extract the indicated clusters.  相似文献   
6.
Clustering has been widely used as a fundamental data mining tool for the automated analysis of complex datasets. There has been a growing need for the use of clustering algorithms in embedded systems with restricted computational capabilities, such as wireless sensor nodes, in order to support automated knowledge extraction from such systems. Although there has been considerable research on clustering algorithms, many of the proposed methods are computationally expensive. We propose a robust clustering algorithm with low computational complexity, suitable for computationally constrained environments. Our evaluation using both synthetic and real-life datasets demonstrates lower computational complexity and comparable accuracy of our approach compared to a range of existing methods.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号