首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   6篇
  国内免费   1篇
化学工业   32篇
金属工艺   2篇
能源动力   1篇
轻工业   7篇
无线电   6篇
一般工业技术   16篇
冶金工业   1篇
自动化技术   7篇
  2023年   3篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   9篇
  2015年   2篇
  2014年   9篇
  2013年   8篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  1999年   1篇
  1991年   1篇
  1977年   1篇
排序方式: 共有72条查询结果,搜索用时 46 毫秒
1.
2.
Green tea is a rich source of catechins, which when purified have a high economic value as they can be used as a supplement in several products, to increase their health benefits. Catechins are regarded as desired components with several applications in a variety of areas such as foods, cosmetics and pharmaceuticals. A multicomponent sorption model has been developed for the separation of catechins from liquid tea streams, with macroporous resins in a packed bed column. Two commercially available food grade resins were considered: Amberlite XADHP and Diaion HP20. For the desorption step, two food grade solvents are used: water and ethanol. The adsorption and desorption behaviour is subsequently mathematically described with one-dimensional axial dispersed plug flow model that can accurately simulate the dynamics of the solvent swing sorption columns. The model parameters were regressed from experimental data. Five components are modelled in the competitive sorption: the main four catechins present in green tea and caffeine. The model was used for the process design and optimization for the recovery of catechins from green tea.  相似文献   
3.
This article reports the application of ozone for the selective oxidation of cyclohexane over 13X molecular sieve supported various metal oxides at ambient temperatures. From the SEM, XRD and HR-TEM results, the impregnated metal oxides are highly dispersed on the support. The activity results reveal that Co/MS, Mo/MS, Cu/MS, and Ag/MS catalysts produce cyclohexanone/cyclohexanol as selective oxidation products, whereas Ce/MS, Mn/MS, and V/MS catalysts yield, predominantly, CO and CO2. Among them, Co/MS catalyst exhibits better conversion of 12.2% with selectively of 58% to cyclohexanone/cyclohexanol, which is attributed to the simultaneous activation of ozone and cyclohexane (-C-H bond) at ambient conditions.  相似文献   
4.
Finite element analysis (FEA) was used to model the joining of titanium grade 2 (Ti) to AISI 321 stainless steel (SS) transition joint of lap configuration with grooves at the interface on SS side. The hot forming of Ti for filling the grooves without defects was simulated. FEA involving large plastic flow with sticking friction condition was initially validated using compression test on cylindrical specimen at 900 °C. The barreled shape and a no-deformation zone in the sample predicted by FEA matched with those of the compression experiments. For the joining process, FEA computed the distribution of strain and hydrostatic stress in Ti and the minimum ram load required for a defect-free joint. The hot forming parameters for Ti to fill the grooves without defects and any geometrical distortion of the die were found to be 0.001 s?1 at 900 °C. Using these conditions a defect-free Ti-SS joint was experimentally produced.  相似文献   
5.
The available thermodynamic databases for magnesium alloys are discussed in this paper. Of particular interest are the features of a magnesium database developed by the authors with 19 elements: Mg-Al-Ca-Ce-Cu-Fe-KLa-Li-Mn-Na-Nd-Pr-Si-Sn-Sr-Y-Zn-Zr. Using this database, two applications are presented. One is the phase evolution in AZ61 magnesium alloy including the variations of phase fractions, alloying compositions, and partition coefficients of alloying elements as a function of temperature (or solid fraction). The other is to understand sodium-induced high-temperature embrittlement in the Al-Mg alloy, which is ascribed to the formation of a liquid phase due to the presence of sodium traces.  相似文献   
6.
A pulse tube cryocooler (PTC) for future metrological satellites has been developed at one of the lead centers of the Indian Space Research Organisation in Bangalore, India for cooling on-board Infrared (IR) detectors to 80 K.A study has been conducted on the coldfinger of PTC to understand the off-state heat loads on the cooler by varying the value of gravity numerically in ANSYS FLUENT and experimentally by orienting the setup with respect to gravity. The off-state parasitic losses represent a major heat load in on-board applications that include redundant, viz. nonoperating coolers. To find out the amount of off-state parasitic heat losses in a nonoperating coldfinger of the PTC experimentally, transient warm-up technique was used. Various heat loads were applied experimentally on the cryo-tip at temperatures ranging from 80 to 100 K for determining the parasitic losses. The effect of orientation of PTC on the off-state parasitic heat load with respect to gravity is studied and presented in this paper. Enhancement due to free convection heat flow normalized by gas molecular conduction in pulse tube is analyzed using computational fluid dynamics to verify and compare with experimental results. The best orientation angle where the parasitic is low is when the cold end of the coldfinger of pulse tube cryocooler faces down (0°) and high when the cold end of the coldfinger is oriented to 135°.  相似文献   
7.
In this paper, we report the two stage growth of Cu2ZnSnS4 (CZTS) thin films as a function of sulfurization time. First, magnetron sputtered metallic precursors were deposited sequentially (Zn/Cu/Sn/Cu) over rotating glass substrates held at 230?°C. Later, the sputtered precursors were heat treated at 500?°C in the ambiance of sulfur for various time durations in the range, 10–120 min. The sulfur treated samples were examined using various analytical tools to understand the role of sulfurization time on the CZTS growth and properties. From composition and structural analysis, Zn/Cu/Sn/Cu precursors sulfurized for shorter duration (10 and 20 min) revealed severe deficiency of sulfur that resulted in several metallic, bi-metallic and metal sulfide phases. With the increase of sulfurization time to 30 min, sulfur incorporation was enhanced and reached stoichiometric ratio (~50% S) for CZTS growth, however, samples were poorly crystalline in nature and consisted of prominent Cu2?xS phase as well. The Zn/Cu/Sn/Cu precursors sulfurized for 60 min exhibited prominent CZTS phase without Cu2?xS phase. Further, rise in sulfurization time to 120 min enabled drastic improvement in crystallinity of CZTS phase. Raman mapping over 60 µm × 60 µm for these films confirmed the homogeneous phase growth of CZTS. XPS study revealed the oxidation states of Cu1+, Zn2+, Sn4+ and S2? in CZTS films. The optimized films showed high absorption coefficient of 105 cm?1 with an optical band gap of 1.51 eV. These films showed leaf like grain morphology with high mobility and low resistivity of 18.2 cm2/V-s and 0.7 Ω-cm, respectively.  相似文献   
8.
Seaweed extracts are considered effective therapeutic alternatives to synthetic anticancer, antioxidant, and antimicrobial agents, owing to their availability, low cost, greater efficacy, eco-friendliness, and non-toxic nature. Since the bioactive constituents of seaweed, in particular, phytosterols, possess plenty of medicinal benefits over other conventional pharmaceutical agents, they have been extensively evaluated for many years. Fortunately, recent advances in phytosterol-based research have begun to unravel the evidence concerning these important processes and to endow the field with the understanding and identification of the potential contributions of seaweed-steroidal molecules that can be used as chemotherapeutic drugs. Despite the myriad of research interests in phytosterols, there is an immense need to fill the void with an up-to-date literature survey elucidating their biosynthesis, pharmacological effects, and other biomedical applications. Hence, in the present review, we summarize studies dealing with several types of seaweed to provide a comprehensive overview of the structural determination of several phytosterol molecules, their properties, biosynthetic pathways, and mechanisms of action, along with their health benefits, which could significantly contribute to the development of novel drugs and functional foods.  相似文献   
9.
The bone implants used in tissue repair are susceptible to infections caused by staphylococci, specifically Staphylococcus aureus. Hence, the development of better biological materials that provide antimicrobial activity in bone tissue engineering is required. The nanoparticles of hydroxyapatite (nHAp) and nHAp dopped with Zn (nHAp-Zn) were prepared by the wet chemical method and the ion exchange method, respectively. They were characterized using SEM, AFM, FTIR and XRD. The antibacterial activity of nHAp and nHAp-Zn was determined with Gram-negative and Gram-positive bacterial strains. The results indicated that nHAp alone was acting as an inert matrix and when substituted with Zn, it showed better antibacterial activity. The nHAp-Zn was found to be non-toxic to osteoprogenitor cells. Thus, due to the antimicrobial property of nHAp-Zn nanoparticles, we suggest that they would have potential applications towards bone tissue engineering.  相似文献   
10.
Dead organs enclosing embryos, such as seed coats and pericarps, are emerging as important maternally-derived components of the dispersal unit that affect seed performance and fate. In the face of climate change and increased incidents of heatwaves, we sought to investigate the effect of salinity (S), short episodes of high temperature (HS), and combination of S + HS (SHS), at the reproductive phase, on the properties of dead pericarps of Brassica juncea. Proteome and metabolome analyses revealed multiple proteins and metabolites stored in dead pericarps whose levels and composition were altered under single and combined stress conditions. The protein profile of SHS showed a higher correlation with salt than with HS indicating the dominant effect of salt over heat stress. On the other hand, the analysis of metabolites showed that the profile of SHS has better correlation with HS than with salt. The integration of metabolic and proteomic data showed that changes in TCA cycle intermediates and certain amino acids (e.g., proline) under salt treatments (S and SHS) are highly correlated with changes in proteins involved in their biosynthetic pathways. Thus, accumulation of proteins and metabolites in dead pericarps is differently affected by single and combination of salt and heat stresses. Salinity appears to dominate plant response to combined stresses at the protein level, while heat appears to be the major factor affecting metabolite accumulation in dead pericarps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号