首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
石油天然气   1篇
自动化技术   6篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Intensity inhomogeneity is a smooth intensity change inside originally homogeneous regions. Filter-based inhomogeneity correction methods have been commonly used in literatures. However, there are few literatures which compare effectiveness of these methods for inhomogeneity correction. In this paper, a new filter-based inhomogeneity correction method is proposed and the effectiveness of the proposed method and other filter-based inhomogeneity correction methods are compared. The methods with different kernel sizes are applied on MRI brain images and the quality of inhomogeneity correction of different methods are compared quantitatively. Experimental results show the proposed method in a kernel size of 20 * 20 performs almost better than or equal the performance of other methods in all kernel sizes.  相似文献   
2.
The segmentation of liver using computed tomography (CT) data has gained a lot of importance in the medical image processing field. In this paper, we present a survey on liver segmentation methods and techniques using CT images, recent methods presented in the literature to obtain liver segmentation are viewed. Generally, liver segmentation methods are divided into two main classes, semi-automatic and fully automatic methods, under each of these two categories, several methods, approaches, related issues and problems will be defined and explained. The evaluation measurements and scoring for the liver segmentation are shown, followed by the comparative study for liver segmentation methods, pros and cons of methods will be accentuated carefully. In this paper, we concluded that automatic liver segmentation using CT images is still an open problem since various weaknesses and drawbacks of the proposed methods can still be addressed.  相似文献   
3.
Review of brain MRI image segmentation methods   总被引:3,自引:2,他引:1  
Brain image segmentation is one of the most important parts of clinical diagnostic tools. Brain images mostly contain noise, inhomogeneity and sometimes deviation. Therefore, accurate segmentation of brain images is a very difficult task. However, the process of accurate segmentation of these images is very important and crucial for a correct diagnosis by clinical tools. We presented a review of the methods used in brain segmentation. The review covers imaging modalities, magnetic resonance imaging and methods for noise reduction, inhomogeneity correction and segmentation. We conclude with a discussion on the trend of future research in brain segmentation.  相似文献   
4.
Computed tomography (CT) imaging remains the most utilized modality for liver-related cancer screening and treatment monitoring purposes. Liver, liver tumor and liver vasculature segmentation from CT data is a prerequisite for treatment planning and computer assisted detection/diagnosis systems. In this paper, we present a survey on liver, liver tumor and liver vasculature segmentation methods that are using CT images, recent methods presented in the literature are viewed and discussed along with positives, negatives and statistical performance of these methods. Liver computer assisted detection/diagnosis systems will also be discussed along with their limitations and possible ways of improvement. In this paper, we concluded that although there is still room for improvement, automatic liver segmentation methods have become comparable to human segmentation. However, the performance of liver tumor segmentation methods can be considered lower than expected in both automatic and semi-automatic methods. Furthermore, it can be seen that most computer assisted detection/diagnosis systems require manual segmentation of liver and liver tumors, limiting clinical applicability of these systems. Liver, liver tumor and liver vasculature segmentation is still an open problem since various weaknesses and drawbacks of these methods can still be addressed and improved especially in tumor and vasculature segmentation along with computer assisted detection/diagnosis systems.  相似文献   
5.
6.
Coverage and connectivity are the two main functionalities of wireless sensor network. Stochastic node deployment or random deployment almost always cause hole in sensing coverage and cause redundant nodes in area. In the other hand precise deployment of nodes in large area is very time consuming and even impossible in hazardous environment. One of solution for this problem is using mobile robots with concern on exploration algorithm for mobile robot. In this work an autonomous deployment method for wireless sensor nodes is proposed via multi-robot system which robots are considered as node carrier. Developing an exploration algorithm based on spanning tree is the main contribution and this exploration algorithm is performing fast localization of sensor nodes in energy efficient manner. Employing multi-robot system and path planning with spanning tree algorithm is a strategy for speeding up sensor nodes deployment. A novel improvement of this technique in deployment of nodes is having obstacle avoidance mechanism without concern on shape and size of obstacle. The results show using spanning tree exploration along with multi-robot system helps to have fast deployment behind efficiency in energy.  相似文献   
7.
Breast cancer is the leading type of cancer diagnosed in women. For years human limitations in interpreting the thermograms possessed a considerable challenge, but with the introduction of computer assisted detection/diagnosis (CAD), this problem has been addressed. This review paper compares different approaches based on neural networks and fuzzy systems which have been implemented in different CAD designs. The greatest improvement in CAD systems was achieved with a combination of fuzzy logic and artificial neural networks in the form of FALCON-AART complementary learning fuzzy neural network (CLFNN). With a CAD design based on FALCON-AART, it was possible to achieve an overall accuracy of near 90%. This confirms that CAD systems are indeed a valuable addition to the efforts for the diagnosis of breast cancer. Lower cost and high performance of new infrared systems combined with accurate CAD designs can promote the use of thermography in many breast cancer centres worldwide.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号