首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  国内免费   1篇
化学工业   5篇
建筑科学   1篇
能源动力   1篇
轻工业   2篇
无线电   1篇
一般工业技术   5篇
自动化技术   1篇
  2022年   6篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2003年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
The UV-Visible absorption spectra of virgin and gamma irradiated (20–800 kGy) CR-39 polymer have been deduced by using Shimadzu Double beam Double Monochromator UV-Visible Spectrophotometer (UV-2550). The existence of the peaks, their shifting and broadening as a result of gamma irradiation has been discussed. Finally the indirect and direct band gap in virgin and gamma irradiated CR-39 has been determined. The values of indirect band gap have been found to be lower than the corresponding values of direct band gap.  相似文献   
2.
Through-silicon vias (TSVs) have provided an attractive solution for three-dimensional (3D) integrated devices and circuit technologies with reduced parasitic losses and power dissipation, higher input-output (I/O) density and improved system performance. This paper investigates the propagation delay and average power dissipation of single-walled carbon nanotube bundled TSVs having different via radius and height. Depending on the physical configuration, a comprehensive and accurate analytical model of CNT bundled TSV is employed to represent the via (vertical interconnect access) line of a driver-TSV-load (DTL) system. The via radius and height are used to estimate the bundle aspect ratio (AR) and the cross-sectional area. For a fixed via height, the delay and the power dissipation are reduced up to 96.2% using a SWCNT bundled TSV with AR = 300 : 1 in comparison to AR = 6 : 1.  相似文献   
3.
Thin films of SnS have been prepared by electron beam evaporation. The films represent Herzbergite orthorhombic structure, established by their XRD patterns. The band gap energy and type of optical transitions were determined from transmission spectra and an optical band gap of Eg(tr)=1.23 eV for indirect transitions and Eg(tr)=1.38 eV for direct transitions were estimated. Using the dependence of photoconductivity from wavelength, a band gap of Eg(ph)=1.2 eV was determined as well. A thermal band gap of Eg(T)=1.29 eV was evaluated from the temperature dependence of the dark resistivity, and admixture level with activation energies (0.25 and 0.36 eV) were found. Roughness of the surface of SnS thin films was evaluated using atomic force microscopy.  相似文献   
4.
COVID-19, caused by the highly transmissible severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has rapidly spread and become a pandemic since its outbreak in 2019. We have previously discovered that aloperine is a new privileged scaffold that can be modified to become a specific antiviral compound with markedly improved potency against different viruses, such as the influenza virus. In this study, we have identified a collection of aloperine derivatives that can inhibit the entry of SARS-CoV-2 into host cells. Compound 5 is the most potent tested aloperine derivative that inhibited the entry of SARS-CoV-2 (D614G variant) spike protein-pseudotyped virus with an IC50 of 0.5 µM. The compound was also active against several other SARS-CoV-2 variants including Delta and Omicron. Results of a confocal microscopy study suggest that compound 5 inhibited the viral entry before fusion to the cell or endosomal membrane. The results are consistent with the notion that aloperine is a privileged scaffold that can be used to develop potent anti-SARS-CoV-2 entry inhibitors.  相似文献   
5.
Over the past decade, incorporation of nanomaterials into agricultural practices like nanofertilizers and nanopesticides has gained a lot of attention. Progress and application of fertilizers in nanoforms are one of the effective options for considerable improvement of the agricultural yield worldwide. Zinc oxide nanoparticles (ZnO NPs) are considered as a biosafe material for biological species. Earlier studies have shown the potential of ZnO NPs in stimulation of seed germination and plant growth as well as disease suppression and plant protection by its antimicrobial activity. However, both positive and negative effects of ZnO NPs on plant growth and metabolism at various developmental periods have been documented. Uptake, translocation and accumulation of ZnO NPs by plants depend upon the features of NPs as well as the anatomy of the host plant. This review summarizes the applications of ZnO NPs as nanofertilizer in crop production and also attempts to examine and record the possible mechanism of antimicrobial activity of ZnO NPs. Biological synthesis of ZnO NPs and their uptake, translocation and biotransformation in plants via various routes have also been examined.  相似文献   
6.
Silicon - Thermo-physical properties of hollow glass microsphere (HGM) filled silicone resin are analyzed by various mathematical models to optimize the formulation for a low-density...  相似文献   
7.
8.
Medians or central reservations have received scant attention in the vast literature on the history, morphology and design of streets, and are rarely considered as places where people can gather. They are mostly conceived as safety barriers, traffic-calming elements or visual features on multi-way streets. However, by focusing on a case study from Berkeley, California, this paper demonstrates how medians transform into active, informal gathering places despite the presence of prominent prohibitory signage and apparent safety risks. The paper explains how the ‘unlawful’ activity of sitting on the median, or ‘picnicking’ in this instance, is selectively condoned by the City of Berkeley to suit its own liberal image, and because of the commercial interests at stake, underscoring the political dimension in the production of public space. The paper thus engages a discussion of the concepts and practices related to street design, urban informality and public space enforcement, for which the ‘median picnic’ stands as a striking example.  相似文献   
9.
The RNA exosome is a multi-subunit ribonuclease complex that is evolutionally conserved and the major cellular machinery for the surveillance, processing, degradation, and turnover of diverse RNAs essential for cell viability. Here we performed integrated genomic and clinicopathological analyses of 27 RNA exosome components across 32 tumor types using The Cancer Genome Atlas PanCancer Atlas Studies’ datasets. We discovered that the EXOSC4 gene, which encodes a barrel component of the RNA exosome, was amplified across multiple cancer types. We further found that EXOSC4 alteration is associated with a poor prognosis of pancreatic cancer patients. Moreover, we demonstrated that EXOSC4 is required for the survival of pancreatic cancer cells. EXOSC4 also repressed BIK expression and destabilized SESN2 mRNA by promoting its degradation. Furthermore, knockdown of BIK and SESN2 could partially rescue pancreatic cells from the reduction in cell viability caused by EXOSC4 knockdown. Our study provides evidence for EXOSC4-mediated regulation of BIK and SESN2 mRNA in the survival of pancreatic tumor cells.  相似文献   
10.
Radiation-induced loss of the hematopoietic stem cell progenitor population compromises bone marrow regeneration and development of mature blood cells. Failure to rescue bone marrow functions results in fatal consequences from hematopoietic injury, systemic infections, and sepsis. So far, bone marrow transplant is the only effective option, which partially minimizes radiation-induced hematopoietic toxicities. However, a bone marrow transplant will require HLA matching, which will not be feasible in large casualty settings such as a nuclear accident or an act of terrorism. In this study we demonstrated that human peripheral blood mononuclear cell-derived myeloid committed progenitor cells can mitigate radiation-induced bone marrow toxicity and improve survival in mice. These cells can rescue the recipient’s hematopoietic stem cells from radiation toxicity even when administered up to 24 h after radiation exposure and can be subjected to allogenic transplant without GVHD development. Transplanted cells deliver sEVs enriched with regenerative and immune-modulatory paracrine signals to mitigate radiation-induced hematopoietic toxicity. This provides a natural polypharmacy solution against a complex injury process. In summary, myeloid committed progenitor cells can be prepared from blood cells as an off-the-shelf alternative to invasive bone marrow harvesting and can be administered in an allogenic setting to mitigate hematopoietic acute radiation syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号