首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
一般工业技术   1篇
自动化技术   1篇
  2018年   1篇
  2015年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
This article reports the fabrication of three-dimensional porous chitosan and hydroxyapatite (HA)/chitosan composite scaffolds by the thermally induced phase separation (TIPS) technique, for bone tissue engineering. Different amounts of HA nanoparticles (10%, 20%, and 30% g/g) were added to the chitosan solution to produce HA/chitosan composite scaffolds of varying compositions. The morphology and pore structure of the scaffolds vis-à-vis composition were characterized using scanning electron microscopy (SEM) and an energy dispersive X-ray (EDX). Both pure chitosan and HA/chitosan composite scaffolds were highly porous and had interconnected pores. The pore sizes ranged from several micrometers to a few hundred micrometers. The HA nanoparticles were well dispersed and physically coexisted with chitosan in the composite scaffolds. However, some agglomeration of HA nanoparticles was observed on the surface of pore walls when a relatively large amount of HA was used. The composite 3D scaffolds are very promising for use in bone tissue engineering application.  相似文献   
2.

Biometric security is a fast growing area that gains an increasing interest in the last decades. Digital encryption and hiding techniques provide an efficient solution to protect biometric data from accidental or intentional attacks. In this paper, a highly secure encryption/hiding scheme is proposed to ensure secure transmission of biometric data in multimodal biometric identification/authentication system. The secret fingerprint and iris vectors are sparsely approximated using accelerated iterative hard thresholding technique and then embedded in the host Slantlet-SVD domain of face image. Experiments demonstrate the efficiency of our technique for both encryption and hiding purpose, where the secret biometric information is well encrypted and still extractable with high fidelity even though the carrier image is seriously corrupted. Our experimental results show the efficiency of the proposed technique in term of robustness to attacks, Invisibility, and security.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号