首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4687篇
  免费   288篇
  国内免费   6篇
电工技术   63篇
化学工业   1125篇
金属工艺   160篇
机械仪表   115篇
建筑科学   124篇
矿业工程   23篇
能源动力   167篇
轻工业   547篇
水利工程   10篇
石油天然气   17篇
无线电   161篇
一般工业技术   808篇
冶金工业   1103篇
原子能技术   21篇
自动化技术   537篇
  2023年   30篇
  2022年   91篇
  2021年   191篇
  2020年   108篇
  2019年   98篇
  2018年   202篇
  2017年   176篇
  2016年   213篇
  2015年   164篇
  2014年   210篇
  2013年   337篇
  2012年   226篇
  2011年   289篇
  2010年   185篇
  2009年   158篇
  2008年   161篇
  2007年   151篇
  2006年   94篇
  2005年   80篇
  2004年   77篇
  2003年   60篇
  2002年   52篇
  2001年   31篇
  2000年   24篇
  1999年   25篇
  1998年   186篇
  1997年   208篇
  1996年   143篇
  1995年   96篇
  1994年   49篇
  1993年   67篇
  1992年   17篇
  1991年   12篇
  1990年   21篇
  1989年   17篇
  1988年   17篇
  1987年   13篇
  1986年   12篇
  1985年   18篇
  1984年   34篇
  1983年   21篇
  1982年   39篇
  1981年   46篇
  1980年   58篇
  1979年   26篇
  1978年   38篇
  1977年   110篇
  1976年   235篇
  1975年   14篇
  1973年   11篇
排序方式: 共有4981条查询结果,搜索用时 31 毫秒
1.
A set of novel hydrazone derivatives were synthesized and analyzed for their biological activities. The compounds were tested for their inhibitory effect on the phosphorylating activity of the protein kinase CK2, and their antioxidant activity was also determined in three commonly used assays. The hydrazones were evaluated for their radical scavenging against the DPPH, ABTS and peroxyl radicals. Several compounds have been identified as good antioxidants as well as potent protein kinase CK2 inhibitors. Most hydrazones containing a 4-N(CH3)2 residue or perfluorinated phenyl rings showed high activity in the radical-scavenging assays and possess nanomolar IC50 values in the kinase assays.  相似文献   
2.
The effects of particle size and carbon dioxide concentration on chemical conversion in engineered spherical particles undergoing calcium oxide looping are investigated. Particles are thermochemically cycled in a furnace under different carbon dioxide concentrations. Changes in composition due to chemical reactions are measured using thermogravimetric analysis. Gas composition at the furnace exit is evaluated with mass spectroscopy. A numerical model of thermal transport phenomena developed previously is adapted to match the physical system investigated in the present study. The model is used to elucidate effects of reacting medium characteristics on particle temperature and reaction extent. Experimental and numerical results show that (1) an increase in particle size results in a decrease in carbonation extent, and (2) the carbonation step consists of fast and slow reaction regimes. The reaction rates in the fast and slow carbonation regimes increase with increasing carbon dioxide concentration. The effect of carbon dioxide concentration and the distinction between the fast and slow regimes become more pronounced with increasing particle size.  相似文献   
3.
4.
Metallurgical and Materials Transactions A - The influence of the chemical composition on the crystallization process, amorphous phase formation, and the anticorrosion properties of Al-Zr-Ni-Fe-Y...  相似文献   
5.
The biorelevant PyFALGEA oligopeptide ligand, which is selective towards the epidermal growth factor receptor (EGFR), has been successfully employed as a substrate in magnetic resonance signal amplification by reversible exchange (SABRE) experiments. It is demonstrated that PyFALGEA and the iridium catalyst IMes form a PyFALGEA:IMes molecular complex. The interaction between PyFALGEA:IMes and H2 results in a ternary SABRE complex. Selective 1D EXSY experiments reveal that this complex is labile, which is an essential condition for successful hyperpolarization by SABRE. Polarization transfer from parahydrogen to PyFALGEA is observed leading to significant enhancement of the 1H NMR signals of PyFALGEA. Different iridium catalysts and peptides are inspected to discuss the influence of their molecular structures on the efficiency of hyperpolarization. It is observed that PyFALGEA oligopeptide hyperpolarization is more efficient when an iridium catalyst with a sterically less demanding NHC ligand system such as IMesBn is employed. Experiments with shorter analogues of PyFALGEA, that is, PyLGEA and PyEA, show that the bulky phenylalanine from the PyFALGEA oligopeptide causes steric hindrance in the SABRE complex, which hampers hyperpolarization with IMes. Finally, a single-scan 1H NMR SABRE experiment of PyFALGEA with IMesBn revealed a unique pattern of NMR lines in the hydride region, which can be treated as a fingerprint of this important oligopeptide.  相似文献   
6.
Numerous studies have confirmed the coexistence of oxidative stress and inflammatory processes. Long-term inflammation and oxidative stress may significantly affect the initiation of the neoplastic transformation process. Here, we describe the synthesis of a new series of Mannich base-type hybrid compounds containing an arylpiperazine residue, 1,3,4-oxadiazole ring, and pyridothiazine-1,1-dioxide core. The synthesis was carried out with the hope that the hybridization of different pharmacophoric molecules would result in a synergistic effect on their anti-inflammatory activity, especially the ability to inhibit cyclooxygenase. The obtained compounds were investigated in terms of their potencies to inhibit cyclooxygenase COX-1 and COX-2 enzymes with the use of the colorimetric inhibitor screening assay. Their antioxidant and cytotoxic effect on normal human dermal fibroblasts (NHDF) was also studied. Strong COX-2 inhibitory activity was observed after the use of TG6 and, especially, TG4. The TG11 compound, as well as reference meloxicam, turned out to be a preferential COX-2 inhibitor. TG12 was, in turn, a non-selective COX inhibitor. A molecular docking study was performed to understand the binding interaction of compounds at the active site of cyclooxygenases.  相似文献   
7.
8.
A hybrid fluidized-bed bioreactor for water purification was proposed and analyzed. It is a novel type of bioreactor characterized by hitherto unknown stationary and dynamic features. Steady-state characteristics of this hybrid bioreactor with external liquid circulation are presented. A quantitative analysis of steady-state properties of the bioreactor was performed with the aid of an original mathematical model developed for a double-substrate aerobic microbiological process. A steady-state analysis of aerobic processes characterized by different oxygen demand was performed. The effect of essential parameters was evaluated, including carbonaceous substrate concentration in the feed stream to the apparatus, aeration intensity, total residence time of a liquid in the bioreactor, and height of the bed of fine carrier particles.  相似文献   
9.
Deregulated melanogenesis is involved in melanomagenesis and melanoma progression and resistance to therapy. Vitamin D analogs have anti-melanoma activity. While the hypercalcaemic effect of the active form of Vitamin D (1,25(OH)2D3) limits its therapeutic use, novel Vitamin D analogs with a modified side chain demonstrate low calcaemic activity. We therefore examined the effect of secosteroidal analogs, both classic (1,25(OH)2D3 and 25(OH)D3), and novel relatively non-calcemic ones (20(OH)D3, calcipotriol, 21(OH)pD, pD and 20(OH)pL), on proliferation, colony formation in monolayer and soft-agar, and mRNA and protein expression by melanoma cells. Murine B16-F10 and hamster Bomirski Ab cell lines were shown to be effective models to study how melanogenesis affects anti-melanoma treatment. Novel Vitamin D analogs with a short side-chain and lumisterol-like 20(OH)pL efficiently inhibited rodent melanoma growth. Moderate pigmentation sensitized rodent melanoma cells towards Vitamin D analogs, and altered expression of key genes involved in Vitamin D signaling, which was opposite to the effect on heavily pigmented cells. Interestingly, melanogenesis inhibited ligand-induced Vitamin D receptor translocation and ligand-induced expression of VDR and CYP24A1 genes. These findings indicate that melanogenesis can affect the anti-melanoma activity of Vitamin D analogs in a complex manner.  相似文献   
10.
The importance of coenzyme A (CoA) as a carrier of acyl residues in cell metabolism is well understood. Coenzyme A participates in more than 100 different catabolic and anabolic reactions, including those involved in the metabolism of lipids, carbohydrates, proteins, ethanol, bile acids, and xenobiotics. However, much less is known about the importance of the concentration of this cofactor in various cell compartments and the role of altered CoA concentration in various pathologies. Despite continuous research on these issues, the molecular mechanisms in the regulation of the intracellular level of CoA under pathological conditions are still not well understood. This review summarizes the current knowledge of (a) CoA subcellular concentrations; (b) the roles of CoA synthesis and degradation processes; and (c) protein modification by reversible CoA binding to proteins (CoAlation). Particular attention is paid to (a) the roles of changes in the level of CoA under pathological conditions, such as in neurodegenerative diseases, cancer, myopathies, and infectious diseases; and (b) the beneficial effect of CoA and pantethine (which like CoA is finally converted to Pan and cysteamine), used at pharmacological doses for the treatment of hyperlipidemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号