首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   6篇
电工技术   44篇
化学工业   43篇
机械仪表   1篇
建筑科学   1篇
能源动力   20篇
轻工业   10篇
无线电   3篇
一般工业技术   21篇
原子能技术   5篇
自动化技术   7篇
  2023年   1篇
  2022年   5篇
  2021年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   13篇
  2010年   6篇
  2009年   12篇
  2008年   8篇
  2007年   10篇
  2006年   11篇
  2005年   4篇
  2004年   8篇
  2003年   4篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
1.
This paper describes an effective analysis of magnetic shielding based on homogenization. The analyses become time‐consuming if the problems include the magnetic substances having fine structure. The homogenization of the structure makes it possible to analyze effectively the magnetic fields. The authors introduce a method to estimate the effective permeability of the homogenized substance. This method can be applied to any periodic structure made of magnetic substance. The magnetic shielding effects by the structures against direct‐current (DC) fields generated by electric railways are analyzed by using the present method. As a result, it is found that the overhead way and the protective fence near the railway work as a magnetic shield, whose effects can be improved by appropriate arrangement of those constructions. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 160(4): 7–15, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20310  相似文献   
2.
In order to study water-gas transport processes in the gas-diffusion-layer (GDL) of a proton exchange membrane (PEM) fuel cell system, a multiphase, multiple-relaxation-time lattice Boltzmann model is presented in this work. The model is based on the mean-field diffuse interface theory and can handle the multiphase flows with large density ratios and various viscosities. By using the standard bounce back boundary condition and an approximate average scheme for the non-slip and wetting boundary walls, respectively, detailed liquid-gas transportation in the GDL, in which exact boundary condition is difficult to be implemented, can be simulated. Unlike most of lattice Boltzmann methods based on the Bhatnagar–Gross–Krook collision operator, the present model shows a viscosity-independent velocity field, which is very important in simulating multiphase flows where various viscosities coexist. We validate our model by simulating a static droplet on a wetting wall and compare with theoretical predictions. Then, we simulate a water-gas flow in the GDL of a PEM fuel cell and investigate the saturation-dependent transport properties under different conditions. The results are shown to be qualitatively consistent with the previous numerical and theoretical works.  相似文献   
3.
Wind power generation is expected to become more important in future distribution systems. Although several prospective reports such as IEC 61400‐24 and NREL SR‐500‐31115 indicate an insulation scheme and grounding design for lighting protection, there still seems to be too few investigations on the problems. This paper therefore discusses lightning surge analysis using a wind farm model with 2 or 10 ideal wind turbines. Changing parameters such as grounding resistance and lightning strike points, several cases were studied. As a result of the analysis using digital simulator ARENE, it is clear that the surge tends to propagate toward the end of a distribution line in a wind farm and there is the possibility of insulation accidents at the other wind turbines when lightning attacks a wind turbine. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 162(2): 30– 38, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20364  相似文献   
4.
Electrokinetic effects play an important role in microfluidics and nanofluidics. Although the related phenomena are often utilized to control fluid flow and sample transport in lab-on-a-chip devices, their dependency on the surface charges on the channel walls often remain enigmatic. This is mainly due to the lack of adequate experimental methods to analyse the electrical charging of solid/liquid interfaces of interest. To address this need, an experimental set-up—designated as microslit electrokinetic set-up (MES)—has been recently developed and applied for the investigation of charge formation processes at planar solid/liquid interfaces. The device permits to perform streaming potential and streaming current measurements across a rectangular streaming channel formed by two parallel sample carriers (20×10×3 mm3) at variable distance allowing for the determination of the surface conductivity. Utilizing the MES, charge characteristics can be determined for a wide variety of materials prepared as thin films on top of planar glass substrates. Streaming potential and streaming current data permit to investigate the mechanisms of charge formation while surface conductivity data provide information about mobile charge carriers located in different zones at the interface. The applicability of this advanced experimental approach is demonstrated with examples obtained for surfaces with different levels of complexity:
  1. Preferential ion adsorption onto unpolar fluoropolymer (Teflon® AF) films was characterized in simple electrolyte solutions; the results were quantitatively evaluated with respect to interfacial ion concentrations.
  2. Interrelation of charge density and conformation of grafted poly(L-glutamic acid layers) were unravelled from the determination of pH-depended variations of surface conductivity and layer thickness.
  3. The impact of spatial confinements of surface functional groups on their acid–base behaviour was studied with self-assembled monomolecular films of alkanethiols chemisorbed on gold.
  4. Charging of and ion mobility within poly(acrylic acid) (PAA) brushes prepared by a Langmuir–Blodgett technique were analysed at varied pH and ionic strength.
  5. Interfacial modes of adsorbed proteins were distinguished at two polymer surfaces with varied hydrophobicity/charge density.
  相似文献   
5.
We present a compact formula for describing the mean frictional forces acting on a molecule in multicomponent systems. The friction-based diffusion theory of Zielinski and Hanley was extended to newly include the friction-average molar velocity as a reference frame. The results showed that the previous diffusion theories are unified by the friction-average concept by properly choosing the average velocity. The present model based on the diffusivity-related molar average velocity provides better predictions for the diffusive flux in a ternary miscible liquid compared to the other existing theories. The application of the model in phase-separating ternary systems revealed that the introduction of a highly diffusive third component into demixing polymer blends promotes a particular enhancement of the spinodal decomposition due to the difference in the frictional interactions between polymers.  相似文献   
6.
7.
This paper deals with a DC-micro-grid with renewable energy. The proposed method is composed of a gearless wind power generation system, a battery, and DC loads in a DC distribution system. The battery helps to avoid the DC over-voltages by absorbing the power of the permanent magnet synchronous generator (PMSG) during line-fault. In addition, the control schemes presented in this paper including the maximum power point tracking (MPPT) control and a pitch angle control for the gearless wind turbine generator. By means of the proposed method, high-reliable power can be supplied to the DC distribution system during the line-fault and stable power supply from the PMSG can be achieved after line-fault clearing. The effectiveness of the proposed method is examined in a MATLAB/Simulink® environment.  相似文献   
8.
Osteocytes connect with neighboring osteocytes and osteoblasts through their processes and form an osteocyte network. Shear stress on osteocytes, which is induced by fluid flow in the lacunae and canaliculi, has been proposed as an important mechanism for mechanoresponses. The lacunocanalicular structure is differentially developed in the compression and tension sides of femoral cortical bone and the compression side is more organized and has denser and thinner canaliculi. Mice with an impaired lacunocanalicular structure may be useful for evaluation of the relationship between lacunocanalicular structure and mechanoresponses, although their bone component cells are not normal. We show three examples of mice with an impaired lacunocanalicular structure. Ablation of osteocytes by diphtheria toxin caused massive osteocyte apoptosis, necrosis or secondary necrosis that occurred after apoptosis. Osteoblast-specific Bcl2 transgenic mice were found to have a reduced number of osteocyte processes and canaliculi, which caused massive osteocyte apoptosis and a completely interrupted lacunocanalicular network. Osteoblast-specific Sp7 transgenic mice were also revealed to have a reduced number of osteocyte processes and canaliculi, as well as an impaired, but functionally connected, lacunocanalicular network. Here, we show the phenotypes of these mice in physiological and unloaded conditions and deduce the relationship between lacunocanalicular structure and mechanoresponses.  相似文献   
9.
High tensile strength fibers of poly[(R)‐3‐hydroxybutyrate‐co‐(R)‐3‐hydroxyhexanoate] [P(3HB‐co‐3HH)], a type of microbial polyesters, were processed by one‐step and two‐step cold‐drawn method with intermediate annealing. Thermal degradation behaviors were characterized by differential scanning calorimeter and gel permeation chromatography measurements. Thermal analyses were revealed that molecular weights decreased drastically within melting time at a few minute. One‐step cold‐drawn fiber with drawing ratio of 10 showed tensile strength of 281 MPa, while tensile strength of as‐spun fiber was 78 MPa. When two‐step drawing was applied for P(3HB‐co‐3HH) fibers, the tensile strength was led to 420 MPa. Furthermore, the optimization of intermediate annealing condition leads to enhance the tensile strength at 552 MPa of P(3HB‐co‐3HH) fiber. Wide‐angel X‐ray diffraction measurements of these fibers suggest that the fibers with high tensile strength include much amount of the planer‐zigzag conformation (β‐form) as molecular conformation together with 21 helix conformation (α‐form). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41258.  相似文献   
10.
The case has been established that the wind power plant must be treated as an integral part of the electric system, thereby constituting the wind energy conversion system. Recent advancement in size and technology of wind turbines requires sophisticated control systems to effectively optimize energy conversion and enhance grid integration. As a first step toward controller design, modelling has become a prerequisite. This paper explores controller design based on modelling the wind speed as a stochastic process, and the wind turbine as a multi‐mass system with a soft shaft linking the turbine with the doubly fed induction generator. A control strategy incorporating a linear quadratic Gaussian (LQG) that relies on state estimation for full‐state feedback is proposed to augment a linear controller for generator torque control. The control objectives are to reduce stresses on the drivetrain and to ensure operation geared toward optimal power conversion. This study focuses on above‐rated wind speeds, and the LQG's main purpose is to add damping to the drivetrain, thereby minimizing cyclic fatigue, while a pitch control mechanism prevents rotor overspeed, thereby maintaining rated power. Simulations show the efficacy of the proposed paradigm in meeting the control objectives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号