首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学工业   1篇
能源动力   3篇
无线电   2篇
一般工业技术   1篇
自动化技术   1篇
  2022年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2004年   1篇
  2001年   2篇
排序方式: 共有8条查询结果,搜索用时 656 毫秒
1
1.
The oxidative polymerization of aniline hydrochloride derivatives in water at low temperature is studied without lithium chloride. The resulting polymers have high molecular weight but the conductivity of the acid‐doped films is strongly dependent on the alkyl‐substituted chain at the 2‐positions. The root cause of the alkyl‐substitution effects is thoroughly investigated using density functional theory (DFT) methods (B3LYP using 6–1G(d,p) and 6‐311++G(2d,2p) basis sets). Internal structural changes observed on substitution appear to be more significant than a variety of electronic parameters measured using the natural bond orbital (NBO) method. Interplanar angles steadily increase on substitution, whereas ring orbital properties and the amount of ring delocalization remain fairly constant. An investigation into the extent to which lone pair–σ‐orbital overlap is affected by substitution indicates that increasing the steric bulk of the substituent reduces the ability of the lone pair to delocalize into the ring orbitals. However, the amount of overlap between the two is not adversely affected until the dihedral between them is > 30°, a situation that only occurs in i‐propyl and s‐butyl substitution. This finding is completely reflected in the experimental conductivity measurements.  相似文献   
2.
International Journal of Information Security - Data from Online Social Networks, search engines, and the World Wide Web are forms of unstructured knowledge that are not regularly used in...  相似文献   
3.
Metal Hydride Compressors (MHC) is a promising technology for thermal compression of hydrogen. Besides the absence of a necessity for significant mechanical or electrical energy input, this type of compressor has the advantage that no moving parts are involved. A brief review on the reported experimental set ups of metal hydride compressors is carried out and compared to the metal hydride compressor developed and constructed by HYSTORE Technologies Ltd in Cyprus. The compressor built by HYSTORE consists of 6 stages using AB2 and AB5 – type metal hydride alloys. The MHC is operated between 10 C and 80 °C, which is a temperature range that can be supplied by solar thermal collectors. Furthermore, the experimental results showed, that even lower temperatures of 17 C are sufficient thus reducing the demand for cooling capacity. During the operation, the compressor achieved stable compression of hydrogen from 7 bar more than 220 bar. The specific productivity of the compressor achieved values up to 67.2 lH2 kg?1 h?1.  相似文献   
4.
The main objective of the present study is the integration of hydrogen technologies as an energy storage medium in a hybrid power system. The existing power system of the island of Milos, which is based on fossil fuel generators and a small wind park, is assessed in the context of this paper. System level simulation results, from both technical and economic point of view, are presented for the currently existing and the proposed island's hybrid power system. The latter integrates a higher number of wind turbines and hydrogen technologies as energy storage medium, and the two system architectures are being compared taking into account not only technical and economic parameters but also Green House – Gas (GHG) emissions, fossil fuels consumption and Renewable Energy Sources (RES) penetration increase. Moreover, a sensitivity analysis has been performed in order to determine the contribution of hydrogen technologies equipment costs; with the cost of energy produced (COE) being the critical parameter. Results show that COE for the proposed power system is higher than the existing one, but on the other hand GHG emissions and fossil fuel consumption are significantly reduced. In addition, RES penetration increases dramatically and the sensitivity analysis indicates that a further reduction in hydrogen technologies equipment and subsidy on wind turbine costs would make RES & Hydrogen-based systems economically competitive to the existing power system of the island.  相似文献   
5.
We present a method of electrochemically tuning the threshold intensity of the amplified spontaneous emission (ASE) of a semiconducting polymer thin film. This can be achieved in close contact with a conducting polymer electrode (PEDOT:PSS), if the latter is electrochemically tuned to an optically transparent redox state for the emitted wavelength of interest. This electrical switch between ASE and fluorescence hints that a new route to achieve electrically pumped laser is by combining an electrochemical device with a lasing conjugated polymer.  相似文献   
6.
Two different options for the autonomous power supply of rural or/and remote buildings are examined in this study. The first one involves a PV – diesel based power system, while the second one integrates RES and hydrogen technologies for the development of a self – sustained power system. The main objective is the replacement of the diesel generator and a comparison between these two options for autonomous power supply. Model simulations of the two power systems before and after the replacement, an optimization of the component sizes and a techno – economic analysis have been performed for the purpose of this study. A sensitivity analysis taking into account future cost scenarios for hydrogen technologies is also presented. The results clearly show that the Cost of Energy Produced (COE) from the PV – hydrogen technologies power system is extremely higher than the PV – diesel power system. However, the adopted PV – hydrogen technologies power system reduces to zero the Green – House Gas (GHG) emissions. Moreover, the sensitivity analysis indicates that COE for the latter system can be further reduced by approximately 50% compared to its initial value. This could be achieved by reducing critical COE’s parameters, such as PEM electrolyser and fuel cell capital costs. Hence, a possible reduction on the capital costs of hydrogen energy equipment in combination with emissions reduction mentioned above could make hydrogen – based power systems more competitive.  相似文献   
7.
Electrically conductive polyaniline (PANi) filaments were successfully spun from a spinning solution prepared from the PANi protonated with 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) in dichloroacedic acid (DCA) as a solvent by a wet-spinning process. The conductivity of the fibre is in a range of 145 (±35) Scm–1 to 1440 (±300) Scm–1, which depends on the orientation of polymer chains. The fibre has a Young's modulus about 3.2 GPa, and a tensile strength about 0.23 GPa. Thermal analysis by TGA and DSC show that the fibre has five major weight losses at around 100 °C, 165 °C, 215 °C, 315 °C and 465 °C which are associated with the removal of moisture, residual solvent, the decompositions of the AMPSA, and the degradation of the PANi, respectively. The AMPSA in doped PANi performs two-stage thermal decompositions. The conductivity of the fibre was adversely affected by the thermal ageing due to the evaporation of the residual solvent at the temperatures lower than 100 °C and the decompositions of the dopant AMPSA at the temperatures above 100°C. The temperature dependent conductivity of both aged and unaged fibres is thermally activated at the temperatures between 15 K and 295 K. A negative temperature coefficient was observed in the temperature range of 240 K to 270 K for the unaged fibres. This disappeared when the fibres were thermally aged at 100 °C for 24 hours in vacuum. These results indicate that the residual solvent trapped inside the fibre enhances the electrical conductivity of the fibres, and possibly affects the negative temperature coefficient at the temperatures around 260 K.  相似文献   
8.
The thermal characteristics of inherently conductive polyaniline (PANi) fiber have been studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Fibers show five major weight losses at ∼100°C, 165°C, 215°C, 315°C, and 465°C, which are associated with the removal of moisture, residual solvent, decompositions of the sulfonic acid and degradation of PANi fiber, respectively. The 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPSA) that dopes the PANi (in fiber form) performs two‐stage decompositions. The conductivity of the drawn fibers aged at 50°C, 100°C, 150°C, and 190°C under vacuum for various periods of time decreases, particularly at temperatures higher than 100°C. The reduction in conductivity of the fiber aged at temperatures lower than 100°C is mainly due to the evaporation of the residual solvent (15–20% in the as‐spun fiber). Further decrease in conductivity of the fiber aged at temperatures higher than 100°C is caused by the decomposition of the dopant AMPSA. The temperature‐dependent conductivity of the fiber was measured at 15 K (−258.5°C) to 295 K (21.5°C). The conductivity of both aged and un‐aged fibers is all temperature activated, however, the conductivity of the un‐aged fibers is higher than that of the aged fibers. Although a negative temperature coefficient was observed in the temperature range from 240 K (–24.5°C) to 270 K (–3.5°C) for the un‐aged fibers, it was disappeared when the fibers were thermal aged at 100°C for 24 h in vacuum oven. These results indicate that the residual solvent trapped inside the fiber enhanced the electrical conductivity of the fibers and its “metallic” electrical conductivity at temperatures ∼263 K (–10°C). © 2001 John Wiley & Sons, Inc. † J Appl Polym Sci 79: 2503–2508, 2001  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号