首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
能源动力   1篇
无线电   1篇
一般工业技术   1篇
自动化技术   1篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A broadband dielectric resonator (DR) antenna is proposed, which consists of a rectangular DR coated with metal on three sides and placed on a ground plane. The structure is analyzed by modelling the dielectric-air interface as perfect magnetic conductor (PMC). A coplanar waveguide (CPW) with terminating slots is used to feed the antenna. Measurement results exhibit a wide bandwidth of about 47% over which the Ethetas pattern on the horizontal plane is nearly omnidirectional. The 10-dB bandwidth of this broadband DR monopole covers 4.2-6.8 GHz. Hence, it can be used for WLAN 802.11a applications  相似文献   
2.
Liu TH  Xiao JL  Lee CH  Lin JY 《Applied optics》2011,50(19):3311-3315
We use optical tweezers to trap a unilamellar phospholipid vesicle and measure the out-of-plane thermal fluctuations by using differential confocal microscopy. Bending moduli of the lipid membranes are calculated directly from the mean-square values of the fluctuation amplitudes. Owing to the refractive index contrast between the inner and outer solutions of the vesicle, optical tweezers trap the vesicle laterally and improve the reliability of the measured fluctuation amplitudes along the optical axis. Bending moduli of membranes in gel or fluid phases obtained by the combination of differential confocal microscopy and optical tweezers are close to those reported previously. We also obtain the bending modulus of sphingomyelin membranes in the gel phase, which was not reported previously.  相似文献   
3.
This paper reviews both static and dynamic characteristics of a planar-type Pd–GaN metal–semiconductor–metal (MSM) hydrogen sensor. The sensing mechanism of a metal–semiconductor (MS) hydrogen sensor was firstly reviewed to realize the sensing mechanism of the proposed sensor. Symmetrically bi-directional current–voltage characteristics associated with our sensor were indicative of easily integrating with other electrical/optical devices. In addition to the sensing current, the sensing voltage was also used as detecting signals in this work. With regard to sensing currents (sensing voltages), the proposed sensor was biased at a constant voltage (current) in a wide range of hydrogen concentration from 2.13 to 10,100 ppm H2/N2. Experimental results reveal that the proposed sensor exhibits effective barrier height variations (sensing responses) of 134 (173) and 20 mV (1) at 10,100 and 2.13 ppm H2/N2, respectively. A sensing voltage variation as large as 18 V was obtained at 10,100 ppm H2/N2, which is the highest value ever reported. If an accepted sensing voltage variation is larger than 3 (5) V, the detecting limit is 49.1 (98.9) ppm. Moreover, voltage transient response and current transient response to various hydrogen-containing gases were experimentally studied. The new finding is that the former response time is shorter than the latter one. Other dynamic measurements by switching voltage polarity and/or continuously changing hydrogen concentration were addressed, showing the proposed sensor is a good candidate for commonly used MS sensors.  相似文献   
4.
This paper reports on new GaN sensors using a Pd-mixture-Pd triple-layer sensing structure to enhance their sensitivity to hydrogen at the tens of ppm level. The proposed hydrogen sensor biased with a constant voltage produced relatively high sensing responses of 4.84 × 105% at 10,100 ppm and 8.7 × 104% at 49.1 ppm H2 in N2. The corresponding barrier height variations are calculated to be 220 and 168 mV. When the sensor is biased by a constant current with maximum power consumption of 0.4 mW, a sensing voltage as an output signal showed a voltage shift of more than 17 V (the highest value ever reported) at 49.1 ppm H2 in N2. By comparison to Pd-deposited GaN sensors, the improvement in static-state performance is likely attributed to double dipole layers formed individually at the Pd–GaN interface and inside the mixture. Moreover, voltage transient response and current transient response to various hydrogen-containing gases were experimentally studied. The new finding is that the former response time is shorter than the latter one.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号