首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   7篇
化学工业   13篇
金属工艺   1篇
机械仪表   1篇
建筑科学   3篇
矿业工程   3篇
能源动力   3篇
轻工业   3篇
无线电   16篇
一般工业技术   22篇
冶金工业   5篇
自动化技术   13篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   6篇
  2013年   12篇
  2012年   4篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  1998年   4篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有83条查询结果,搜索用时 265 毫秒
1.
One of the simplest ways to generate electric power from waste heat is thermoelectric (TE) energy conversion. So far, most of the research on thermoelectrics has focused on inorganic bulk TE materials and their device applications. However, high production costs per power output and limited shape conformity hinder applications of state-of-the-art thermoelectric devices (TEDs). In recent years, printed thermoelectrics has emerged as an exciting pathway for their potential in the production of low-cost shape-conformable TEDs. Although several inorganic bulk TE materials with high performance are successfully developed, achieving high performance in inorganic-based printed TE materials is still a challenge. Nevertheless, significant progress has been made in printed thermoelectrics in recent years. In this review article, it is started with an introduction signifying the importance of printed thermoelectrics followed by a discussion of theoretical concepts of thermoelectricity, from fundamental transport phenomena to device efficiency. Afterward, the general process of inorganic TE ink formulation is summarized, and the current development of the inorganic and hybrid inks with the mention of their TE properties and their influencing factors is elaborated. In the end, TEDs with different architecture and geometries are highlighted by documenting their performance and fabrication techniques.  相似文献   
2.
 The advantage of thermoplastic molding as a convenient method for fabricating large quantities of microstructures is restricted by the possibilities and the necessary efforts for structuring the required molding tools. In order to increase the complexity of mold inserts without significantly increasing the fabrication expenditure a new process combining LIGA techniques and precision mechanics had been suggested by Research Center Karlsruhe. Recent work on the optimization of this process made it possible to manufacture multi-leveled mold inserts with which different three-dimensional microcomponents have successfully been molded. The two- and three-level structures feature among other details integrated alignment aids which worked very well during the assembly of the valve system the components were designed for. This paper deals with the process optimization, the manufacturing of the mold inserts, the fabrication of the three-dimensional microstructures by hot embossing in PMMA as well as in polymers with high thermal resistance and the application in a microvalve system. Received: 25 August 1997/Accepted: 22 September 1997  相似文献   
3.
Automats for patch clamping suspended cells in whole-cell configuration must (1) bring isolated cells in contact with patch contacts, (2) form gigaseals, and (3) establish stable intracellular access that allows for high quality recording of ionic currents. Single openings in planar substrates seem to be intriguing simple solutions for these problems, but due to the low rate of formation of whole-cell configurations we discarded this approach. Single openings are not suited for both attracting cells to the opening by suction and forming gigaseals with subsequent membrane rupture. To settle the three tasks with a mechanical microstructure we developed the socalled CYTOCENTERING technique to apply to suspended cells the same operation sequence as in conventional patch clamping. With this method we immobilized selected cells from a flowing suspension on the tip of a patch pipette by suction with a success rate of 97% and formed gigaseals with a success rate of 68%. Subsequent whole-cell recordings and intracellular staining with Lucifer yellow proved the stable access to the cytoplasm. Currently, a chip with an embedded suction opening in glass surrounding the microstructured contact pipette is under development. The processing of this CYTOPATCH chip is compatible to large-volume production. The CYTOPATCH automat will allow for fully automated, parallel, and asynchronous whole-cell recordings.  相似文献   
4.
5.
The development of novel delivery systems for therapeutic substancesincludes targeting of the carriers to a specific site or tissuewithin the body of the recipient. This can be accomplished byappropriate receptor-binding domains and requires linking ofthese domains to the carrier. We have used recombinantly expressedpolyomavirus-like particles as a model system and inserted thesequence of a WW domain into different surface loops of theviral capsid protein VP1. In one variant, the WW domain maintainedits highly selective binding properties of proline-rich ligandsand showed an increased affinity but also an accelerated association/dissociationequilibrium compared to the isolated WW domain, thus allowinga short-term coupling of external ligands onto the surface ofthe virus-like particles.  相似文献   
6.
Within the WISMUT environmental remediation programme, the rehabilitation of the former uranium mine at Königstein is a very special case due to its use of underground leaching and its location near the Elbe River. The mine water is acidic, oxidizing, and polluted with uranium and other contaminants, and must be pumped to the surface and treated. In-situ water treatment approaches have been investigated to optimise further flooding and shorten the period of conventional water treatment. In 2010/2011, a field-scale experiment was carried out: about 120 t of alkalinity were successfully injected into the partially flooded mine. Tracer signals and geochemical reactions achieved general expectations. Based on the results, a site-specific technology concept was developed to flood the mine to its natural decant level.  相似文献   
7.
8.
9.
10.
 Complex microstructures can be fabricated in large quantities by thermoplastic molding processes. The shape of the microstructures is determined mainly by the mold insert. Until now, multi-level mold inserts have been fabricated either by deep etch X-ray lithography and electroforming, Harmening et al. (1992), or by milling of a brass substrate, Schaller et al. (1995). In both cases there are limitations on structuring either by the fabrication effort or by the sizes of the smallest available milling heads. To avoid these limitations on structuring, a new process for manufacturing multi-level mold inserts has been developed at Forschungszentrum Karlsruhe. Milling, drilling, deep etch X-ray lithography and electroforming have been combined to manufacture a mold insert which is characterized by high aspect ratios with small lateral dimensions and various level heights. Samples with two levels and an aspect ratio of 15 have been manufactured. Much higher aspect ratios seem to be achievable. This paper covers the fabrication process, first tests, and experimental results of manufacturing a multi-level mold insert for molding three-dimensional components of a microvalve system. Received: 30 October 1995 / Accepted: 17 January 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号