首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
无线电   3篇
自动化技术   12篇
  2016年   2篇
  2014年   2篇
  2012年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
排序方式: 共有15条查询结果,搜索用时 341 毫秒
1.
We introduce a new volumetric registration technique that effectively combines active surfaces with the finite element method. The method simultaneously aligns multi-label automatic structural segmentation results, which can be obtained by the application of existing segmentation software, to produce an anatomically accurate 3D registration. This registration is obtained by the minimization of a single energy functional. Just like registering raw images, obtaining a 3D registration this way still requires solving a fundamentally ill-posed problem. We explain through academic examples as well as an MRI dataset with manual anatomical labels, which are hidden from the registration method, how the quality of a registration method can be measured and the advantages our approach offers.  相似文献   
2.
3.
Active contours without edges   总被引:358,自引:0,他引:358  
We propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by the gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We give a numerical algorithm using finite differences. Finally, we present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.  相似文献   
4.
5.
Self-repelling snakes for topology-preserving segmentation models.   总被引:2,自引:0,他引:2  
The implicit framework of the level-set method has several advantages when tracking propagating fronts. Indeed, the evolving contour is embedded in a higher dimensional level-set function and its evolution can be phrased in terms of a Eulerian formulation. The ability of this intrinsic method to handle topological changes (merging and breaking) makes it useful in a wide range of applications (fluid mechanics, computer vision) and particularly in image segmentation, the main subject of this paper. Nevertheless, in some applications, this topological flexibility turns out to be undesirable: for instance, when the shape to be detected has a known topology, or when the resulting shape must be homeomorphic to the initial one. The necessity of designing topology-preserving processes arises in medical imaging, for example, in the human cortex reconstruction. It is known that the human cortex has a spherical topology so throughout the reconstruction process this topological feature must be preserved. Therefore, we propose in this paper a segmentation model based on an implicit level-set formulation and on the geodesic active contours, in which a topological constraint is enforced.  相似文献   
6.
Image segmentation using a multilayer level-set approach   总被引:1,自引:0,他引:1  
We propose an efficient multilayer segmentation method based on implicit curve evolution and on variational approach. The proposed formulation uses the minimal partition problem as formulated by D. Mumford and J. Shah, and can be seen as a more efficient extension of the segmentation models previously proposed in Chan and Vese (Scale-Space Theories in Computer Vision, Lecture Notes in Computer Science, Vol. 1682, pp. 141–151, 1999, IEEE Trans Image Process 10(2):266–277, 2001), and Vese and Chan (Int J Comput Vis 50(3):271–293, 2002). The set of unknown discontinuities is represented implicitly by several nested level lines of the same function, as inspired from prior work on island dynamics for epitaxial growth (Caflisch et al. in Appl Math Lett 12(4):13, 1999; Chen et al. in J Comput Phys 167:475, 2001). We present the Euler–Lagrange equations of the proposed minimizations together with theoretical results of energy decrease, existence of minimizers and approximations. We also discuss the choice of the curve regularization and conclude with several experimental results and comparisons for piecewise-constant segmentation of gray-level and color images.  相似文献   
7.
In this paper, we are interested in texture modeling with functional analysis spaces. We focus on the case of color image processing, and in particular color image decomposition. The problem of image decomposition consists in splitting an original image f into two components u and v. u should contain the geometric information of the original image, while v should be made of the oscillating patterns of f, such as textures. We propose here a scheme based on a projected gradient algorithm to compute the solution of various decomposition models for color images or vector-valued images. We provide a direct convergence proof of the scheme, and we give some analysis on color texture modeling.  相似文献   
8.
We propose in this paper minimization algorithms for image restoration using dual functionals and dual norms. In order to extract a clean image u from a degraded version f=Ku+n (where f is the observation, K is a blurring operator and n represents additive noise), we impose a standard regularization penalty Φ(u)= φ(|Du|)dx<∞ on u, where φ is positive, increasing and has at most linear growth at infinity. However, on the residual fKu we impose a dual penalty Φ*(fKu)<∞, instead of the more standard fidelity term. In particular, when φ is convex, homogeneous of degree one, and with linear growth (for instance the total variation of u), we recover the (BV,BV *) decomposition of the data f, as suggested by Y. Meyer (Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, vol. 22, Am. Math. Soc., Providence, 2001). Practical minimization methods are presented, together with theoretical, experimental results and comparisons to illustrate the validity of the proposed models. Moreover, we also show that by a slight modification of the associated Euler-Lagrange equations, we obtain well-behaved approximations and improved results.
Luminita A. Vese (Corresponding author)Email:
  相似文献   
9.
In this paper, we propose a new variational model for image denoising and decomposition, witch combines the total variation minimization model of Rudin, Osher and Fatemi from image restoration, with spaces of oscillatory functions, following recent ideas introduced by Meyer. The spaces introduced here are appropriate to model oscillatory patterns of zero mean, such as noise or texture. Numerical results of image denoising, image decomposition and texture discrimination are presented, showing that the new models decompose better a given image, possible noisy, into cartoon and oscillatory pattern of zero mean, than the standard ones. The present paper develops further the models previously introduced by the authors in Vese and Osher (Modeling textures with total variation minimization and oscillating patterns in image processing, UCLA CAM Report 02-19, May 2002, to appear in Journal of Scientific Computing, 2003). Other recent and related image decomposition models are also discussed.  相似文献   
10.
We propose a new multiphase level set framework for image segmentation using the Mumford and Shah model, for piecewise constant and piecewise smooth optimal approximations. The proposed method is also a generalization of an active contour model without edges based 2-phase segmentation, developed by the authors earlier in T. Chan and L. Vese (1999. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, pp. 141–151) and T. Chan and L. Vese (2001. IEEE-IP, 10(2):266–277). The multiphase level set formulation is new and of interest on its own: by construction, it automatically avoids the problems of vacuum and overlap; it needs only log n level set functions for n phases in the piecewise constant case; it can represent boundaries with complex topologies, including triple junctions; in the piecewise smooth case, only two level set functions formally suffice to represent any partition, based on The Four-Color Theorem. Finally, we validate the proposed models by numerical results for signal and image denoising and segmentation, implemented using the Osher and Sethian level set method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号