首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   8篇
  国内免费   3篇
电工技术   1篇
化学工业   22篇
金属工艺   4篇
机械仪表   2篇
建筑科学   17篇
能源动力   5篇
轻工业   23篇
无线电   19篇
一般工业技术   28篇
冶金工业   10篇
自动化技术   24篇
  2024年   1篇
  2022年   6篇
  2021年   9篇
  2020年   9篇
  2019年   7篇
  2018年   12篇
  2017年   9篇
  2016年   8篇
  2015年   7篇
  2014年   10篇
  2013年   7篇
  2012年   6篇
  2011年   2篇
  2010年   10篇
  2009年   7篇
  2008年   2篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1990年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
1.
Dehydrofreezing process involves water partial removal before freezing. This treatment has been proposed in order to reduce the negative impacts of conventional or even accelerated freezing, especially on the textural quality of high water content fruits and vegetables. Indeed, in such cases, freezing and thawing processes result in severe damage of the integrity of product’s cell structure due to the formation of ice crystals. For this purpose, quince fruits (7?g H2O/g db) were subjected to convective air drying of 40?°C and 3m/s to reach different water content levels of 2, 1, and 0.3?g H2O/g db. Freezing profiles obtained at various freezing rates (V1, V2, and V3) for different water contents allowed the main freezing characteristics such as the Initial Freezing Temperature (IFT), the Practical Freezing time (PFt), and the Specific Freezing time (SFt) to be assessed. The impact of freezing rate was important on PFt and SFt, and more pronounced for high water contents (W between 7 and 2?g H2O/g db (dry basis)). Furthermore, IFT decreased sharply when initial sample water content decreased. Indeed, it started at ?0.8?°C for W?=?7g H2O/g db, while it reached a value of ?8.2?°C for samples of W?=?1g H2O/g db. Since convective air drying normally triggers shrinkage which causes a detrimental deformation of fruit structures, instant controlled pressure drop (DIC) treatment was used to improve the texture and enhance the whole dehydrofreezing performance and the final frozen-thawed product quality. Moreover, DIC implied a slight increase of PFt compared to untreated ones. On the other hand, quality attributes were estimated through the assessment of thawed water exudate (TWE g H2O/100?g db), color and texture (maximum puncture force as index of firmness): freezing rate and water content had great impacts on TWE. Hence, the lower the water content, the weaker the TWE. Furthermore, the TWE of the pre-dried quince (0.3?g H2O/g db) had higher value for DIC-textured samples than for the un-treated ones. Indeed, DIC-texturing leads to a well-controlled structure expansion of the cell wall. These textural changes resulted in more lixiviation of residual water. Consequently, water becomes more available, hence more releasable after thawing. Finally, the partial removal of water by air drying before freezing remarkably reduced the negative impact of freezing/thawing processes on final quince color. Decisively, the firmness of quince fruit increased with the decrease of water content level.

Abbreviations: DMC: Dry Matter Concentration (%); DIC: Instant controlled pressure drop; W: Water content dry basis (g H2O/g db); IFT: Initial Freezing Temperature (°C); PFt: Practical Freezing time (min); SFt: Specific Freezing time (min); TWE: Thawed Water Exudate (g H2O/100?g db); L, a, and b: Color coordinates; (L): The degrees of lightness; (a) and (–a): The redness (a) or greenness (?a), respectively; (b) and (?b): The yellowness (b) or blueness (?b), respectively; ΔE*ab: Total color difference; L0, a0, and b0: Color coordinates of fresh or dried quince samples; SD: Standard Deviation; ANOVA: Analysis of variances; LSD: Least Significant Differences; cp: Specific Heat of the product depending on composition (dry material and water content)(KJ/kg K); cpd: Specific Heat of the dry material (KJ/kg K); cpW: Specific Heat of water (KJ/kg K); V1: Freezing rate without insulation; V2: Freezing rate with a food stretch film insulation with thickness e2?=?3?mm and thermal conductivity λ2?=?0.17 W/m K; V3: Freezing rate with a versatile flexible insulation (Armacell) with thickness e3?=?13mm and weak thermal conductivity λ3?=?0.036 W/m K; vd: Volume of dry material of quince sample (mm3); vH2O: Volume of quince sample water (mm3); vt: Total volume of quince sample (mm3); e0: Quince sample thickness (mm); e2: Insulation thickness in the case V2; = 3?mm; ; e3: Insulation thickness in the case V3; = 13?mm; ; λ0: Quince sample conductivity (W/m K); λ2: Insulation conductivity in the case V2;?=?0.17 W/m K; ; λ3: Insulation conductivity in the case V3;?=?0.036 W/m K; λd: Conductivity of quince sample dry material (W/m K); λH2O: Conductivity of water (W/m K); λequiv: Equivalent conductivity of quince sample versus water content (W/m K); mi and mf: Weights of the frozen and thawed samples, respectively  相似文献   

2.
This paper deals with the design of a nonlinear observer for sensorless induction motor control. Based upon the circle criterion approach, a nonlinear observer is designed to estimate pertinent but unmeasurable state variables of the considered induction machine for sensorless control purpose. The observer gain matrices are computed as a solution of linear matrix inequalities(LMI) that ensure the stability conditions of the state observer error dynamics in the sense of Lyapunov concepts. Measured and estimated state variables can be exploited to perform a state feedback control of the machine system. The simulation results are presented to illustrate the effectiveness of the proposed approach for nonlinear observer design.  相似文献   
3.
Journal of Applied Electrochemistry - The choice of the electroplating conditions of Ni-based alloys has always been a serious research question. In this study, an artificial neural network based...  相似文献   
4.
5.

The Internet of Things (IoT) is a paradigm that has made everyday objects intelligent by offering them the ability to connect to the Internet and communicate. Integrating the social component into IoT gave rise to the Social Internet of Things (SIoT), which has helped overcome various issues such as heterogeneity and navigability. In this kind of environment, participants compete to offer a variety of attractive services. Nevertheless, some of them resort to malicious behaviour to spread poor-quality services. They perform so-called Trust-Attacks and break the basic functionality of the system. Trust management mechanisms aim to counter these attacks and provide the user with an estimate of the trust degree they can place in other users, thus ensuring reliable and qualified exchanges and interactions. Several works in literature have interfered with this problem and have proposed different Trust-Models. The majority tried to adapt and reapply Trust-Models designed for common social networks or peer-to-peer ones. That is, despite the similarities between these types of networks, SIoT ones present specific peculiarities. In SIoT, users, devices and services are collaborating. Devices entities can present constrained computing and storage capabilities, and their number can reach some millions. The resulting network is complex, constrained and highly dynamic, and the attacks-implications can be more significant. In this paper, we propose DSL-STM a new dynamic and scalable multi-level Trust-Model, specifically designed for SIoT environments. We propose multidimensional metrics to describe and SIoT entities behaviours. The latter are aggregated via a Machine Learning-based method, allowing classifying users, detecting attack types and countering them. Finally, a hybrid propagation method is suggested to spread trust values in the network, while minimizing resource consumption and preserving scalability and dynamism. Experimentation made on various simulated scenarios allows us to prove the resilience and performance of DSL-STM.

  相似文献   
6.
Volatility is a key variable in option pricing, trading, and hedging strategies. The purpose of this article is to improve the accuracy of forecasting implied volatility using an extension of genetic programming (GP) by means of dynamic training‐subset selection methods. These methods manipulate the training data in order to improve the out‐of‐sample patterns fitting. When applied with the static subset selection method using a single training data sample, GP could generate forecasting models, which are not adapted to some out‐of‐sample fitness cases. In order to improve the predictive accuracy of generated GP patterns, dynamic subset selection methods are introduced to the GP algorithm allowing a regular change of the training sample during evolution. Four dynamic training‐subset selection methods are proposed based on random, sequential, or adaptive subset selection. The latest approach uses an adaptive subset weight measuring the sample difficulty according to the fitness cases' errors. Using real data from S&P500 index options, these techniques are compared with the static subset selection method. Based on mean squared error total and percentage of non‐fitted observations, results show that the dynamic approach improves the forecasting performance of the generated GP models, especially those obtained from the adaptive‐random training‐subset selection method applied to the whole set of training samples.  相似文献   
7.
This paper presents a study on the development of a hydraulic connectivity analysis-based approach for evaluating leakage rates through geomembrane (GMB)-geosynthetic clay liner (GCL) composite liners considering random hole distributions in a GMB wrinkle network. An algorithm for hydraulic connectivity analysis was developed to find the hydraulically connected wrinkles from a wrinkle network, and an explicitly expressed criterion is proposed to define the hydraulic connection between wrinkles under the assumption that only one of the two adjacent wrinkles is possible to be damaged. A Monte Carlo simulation was used to evaluate the probability weighted average of the total leakage through multiple randomly distributed holes considering numerous possible combinations of locations of holes. The proposed approach was applied to typical examples reported in the literature and shows that it can objectively quantify the effect of the hydraulic properties of the liner and overburden pressure on the hydraulic connectivity between wrinkles in a wrinkle network. The proposed approach also allowed assessing the effect of different probabilities of various hole distributions on the calculated leakage, which was demonstrated to be non-negligible, especially when the hole frequency is small.  相似文献   
8.
Bioavailability of a poorly soluble drug can be improved by preparing a drug nanosuspension and subsequently drying it into nanocomposite microparticles (NCMPs). Unfortunately, drug nanoparticles aggregate during milling and drying, causing incomplete recovery and slow dissolution. The aim of this study is to investigate the impact of various classes of dispersants on drug dissolution from drug NCMPs, with the ultimate goal of enhancing the bioavailability of poorly water-soluble drugs via high drug nanoparticle loaded, surfactant-free NCMPs. Precursor suspensions of griseofulvin (GF, model drug) nanoparticles in the presence of various dispersants were prepared via wet stirred media milling and spray dried to form the NCMPs. Hydroxypropyl cellulose (HPC, polymer) alone and with sodium dodecyl sulfate (SDS, surfactant) was used as a base-line stabilizer/dispersant during milling. Two swellable crosslinked polymers, croscarmellose sodium (CCS) and sodium starch glycolate (SSG), and a conventional soluble matrix former, Mannitol, were used in addition to HPC. Besides being used as-received, CCS was also wet co-milled with GF for two different durations to examine the impact of CCS particle size. Laser diffraction, scanning electron microscopy, powder X-ray diffraction (XRD), UV spectroscopy, NCMP redispersion and dissolution tests were used for characterization. The results show that incorporation of CCS/SSG, preferably wet-milled to a wide particle size distribution, into the spray-dried NCMPs resulted in fast release and dispersion of drug nanoparticle clusters. The swellable dispersants were superior to Mannitol in dissolution enhancement, and could achieve fast release comparable to SDS, demonstrating the feasibility of spray drying to prepare high drug-loaded, surfactant-free nanocomposites.  相似文献   
9.
The 1-methylquinolinium iodide (I) Qui+, I and 2-methylisoquinolinium iodide isoQui+, I were investigated as a corrosion inhibitors for mild steel in sulfuric acid using electrochemical impedance spectroscopy and potentiodynamic polarization techniques. The results indicated that the corrosion inhibition efficiency and extent of surface coverage were increased with increase in inhibitors concentrations. Polarization curves revealed that both inhibitors acted as a mixed-type inhibitor. The thermodynamic parameters were evaluated for corrosion inhibition process. The adsorption of both inhibitors on mild steel surface obeyed Langmuir adsorption isotherm.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号