首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7841篇
  免费   634篇
  国内免费   411篇
电工技术   396篇
综合类   479篇
化学工业   1218篇
金属工艺   513篇
机械仪表   403篇
建筑科学   605篇
矿业工程   361篇
能源动力   178篇
轻工业   484篇
水利工程   144篇
石油天然气   659篇
武器工业   56篇
无线电   961篇
一般工业技术   956篇
冶金工业   376篇
原子能技术   57篇
自动化技术   1040篇
  2024年   45篇
  2023年   151篇
  2022年   273篇
  2021年   366篇
  2020年   298篇
  2019年   274篇
  2018年   267篇
  2017年   290篇
  2016年   261篇
  2015年   357篇
  2014年   402篇
  2013年   517篇
  2012年   500篇
  2011年   539篇
  2010年   462篇
  2009年   448篇
  2008年   382篇
  2007年   425篇
  2006年   411篇
  2005年   353篇
  2004年   218篇
  2003年   187篇
  2002年   152篇
  2001年   142篇
  2000年   155篇
  1999年   198篇
  1998年   158篇
  1997年   117篇
  1996年   114篇
  1995年   105篇
  1994年   91篇
  1993年   54篇
  1992年   47篇
  1991年   36篇
  1990年   22篇
  1989年   21篇
  1988年   15篇
  1987年   6篇
  1986年   7篇
  1985年   7篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1980年   3篇
  1977年   1篇
  1976年   1篇
排序方式: 共有8886条查询结果,搜索用时 15 毫秒
1.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
2.
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.  相似文献   
3.
4.
5.
SiC nano wires were fabricated on the silicon substrate dipped with a layer of Ni catalyst at 900 ℃ by gas pressure annealing processing. The morphologies and crystal structures were determined by scanning electron microscopy(SEM), transmission electron microscopy(TEM)and X-ray diffraction(XRD). The results show that the assynthesized nanowires are β-SiC single crystalline with diameter range of 50-100 nm, and length of tens of micron by directly annealing at 900 ℃. The SiC nano wires grow along the [111] direction with highly uniform morphology. And the possible growth mechanism of SiC nano wires is proposed.The present work provides an efficient strategy for the production of high-quality SiC nano wires.  相似文献   
6.
In this paper, we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme, which was found insecure under two kinds of attacks, fake entangled particles attack and disentanglement attack. Then, by changing the party of the preparation of cluster states and using unitary operations, we present an improved protocol which can avoid these two kinds of attacks. Moreover, the protocol is proposed using the three-qubit partially entangled set of states. It is more efficient by only using three particles rather than four or even more to transmit one bit secret information. Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource, it makes this protocol more convenient from an applied point of view.  相似文献   
7.
8.
9.
Through the simple precipitation of palygorskite (PGS) by zinc borate (ZB) (to make PGS@ZB) and the decoration of PGS@ZB by dodecylamine (N), a novel organic‐inorganic@inorganic hybrid flame retardant of PGS@ZB‐N was prepared and was incorporated with ethylene vinyl acetate copolymer (EVA) to improve its flame retardance. The structure and morphology of PGS@ZB‐N were characterized by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), and scanning electron microscopy (SEM), and it was confirmed that the PGS@ZB‐N hybrid had been successfully prepared. The flame retardancy and burning behavior of EVA/PGS@ZB‐N/EG (EG = expandable graphite) composite were studied through thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL‐94 (by the vertical burning test), and cone calorimeter test (CCT) characterizations. The prepared EVA/PGS@ZB‐N/EG composite obtained an LOI value of 41.2% with the addition of 30 wt% PGS@ZB‐N/EG. It was found that EVA/PGS@ZB‐N/EG was protected through a gas phase and condensed phase alternating synergistic effect mechanism.  相似文献   
10.
Artificial nitrogen fixation is emerging as a promising approach for synthesis of ammonia at mild conditions. Inspired by biological nitrogen fixation based on bacteria containing iron, zinc doped Fe2O3 nanoparticles are proposed as an efficient and earth abundant electrocatalyst for converting N2 to NH3. In neutral media, it achieves a maximum Faradaic efficiency (FE) of 10.4% and a large NH3 yield rate of 15.1 μg h?1 mg?1cat. at ?0.5 V vs. reversible hydrogen electrode. This catalyst also exhibits excellent selectivity and stability. Theoretical calculations suggest the reaction follows the associative enzymatic mechanism and it has a barrier of as low as 0.68 eV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号