首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学工业   3篇
机械仪表   1篇
建筑科学   2篇
无线电   1篇
一般工业技术   5篇
冶金工业   1篇
自动化技术   6篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2018年   1篇
  2017年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有19条查询结果,搜索用时 7 毫秒
1.
Recently, the clinical role of image processing has been developed considerably. The resources of this new technology were exploited for the needs of doctors in their practice. In this study, we propose a computer vision for tracking the uterine collar cancer. Here, we present three stages: preprocessing, segmentation, and classification. The segmentation stage uses a multifractal algorithm based on the computation of the singularity exponents; its role is separating each cell on its core and its cytoplasm, which permits the analysis of each one in the recognition stage for deducing a response about the malignity of the cell. However, the classification is performed by an algorithm of area growth. Knowing that there are four layers in the epithelium, the classification allows for learning the type of each cell in an image for organizing the research in the recognition stage. Thus, we contribute to the creation of a database for the recognition stage. This base contains the core and cytoplasm images with information about the type of each cell. Promising results were obtained with a short execution time that permits the start of the recognition stage. © 2003 Wiley Periodicals, Inc.  相似文献   
2.
3.
Data fusion is one of the challenging issues, the healthcare sector is facing in the recent years. Proper diagnosis from digital imagery and treatment are deemed to be the right solution. Intracerebral Haemorrhage (ICH), a condition characterized by injury of blood vessels in brain tissues, is one of the important reasons for stroke. Images generated by X-rays and Computed Tomography (CT) are widely used for estimating the size and location of hemorrhages. Radiologists use manual planimetry, a time-consuming process for segmenting CT scan images. Deep Learning (DL) is the most preferred method to increase the efficiency of diagnosing ICH. In this paper, the researcher presents a unique multi-modal data fusion-based feature extraction technique with Deep Learning (DL) model, abbreviated as FFE-DL for Intracranial Haemorrhage Detection and Classification, also known as FFEDL-ICH. The proposed FFEDL-ICH model has four stages namely, preprocessing, image segmentation, feature extraction, and classification. The input image is first preprocessed using the Gaussian Filtering (GF) technique to remove noise. Secondly, the Density-based Fuzzy C-Means (DFCM) algorithm is used to segment the images. Furthermore, the Fusion-based Feature Extraction model is implemented with handcrafted feature (Local Binary Patterns) and deep features (Residual Network-152) to extract useful features. Finally, Deep Neural Network (DNN) is implemented as a classification technique to differentiate multiple classes of ICH. The researchers, in the current study, used benchmark Intracranial Haemorrhage dataset and simulated the FFEDL-ICH model to assess its diagnostic performance. The findings of the study revealed that the proposed FFEDL-ICH model has the ability to outperform existing models as there is a significant improvement in its performance. For future researches, the researcher recommends the performance improvement of FFEDL-ICH model using learning rate scheduling techniques for DNN.  相似文献   
4.
5.
Euclidean diagrammatic reasoning refers to the diagrammatic inferential practice that originated in the geometrical proofs of Euclid’s Elements. A seminal philosophical analysis of this practice by Manders (‘The Euclidean diagram’, 2008) has revealed that a systematic method of reasoning underlies the use of diagrams in Euclid’s proofs, leading in turn to a logical analysis aiming to capture this method formally via proof systems. The central premise of this paper is that our understanding of Euclidean diagrammatic reasoning can be fruitfully advanced by confronting these logical and philosophical analyses with the field of cognitive science. Surprisingly, central aspects of the philosophical and logical analyses resonate in very natural ways with research topics in mathematical cognition, spatial cognition and the psychology of reasoning. The paper develops these connections, concentrating on four issues: (1) the cognitive origins of Euclidean diagrammatic reasoning, (2) the cognitive representations of spatial relations in Euclidean diagrams, (3) the nature of the cognitive processes and cognitive representations involved in Euclidean diagrammatic reasoning seen as a form of visuospatial relational reasoning and (4) the complexity of Euclidean diagrammatic reasoning for the human cognitive system. For each of these issues, our analysis generates concrete experiment proposals, opening thereby the way for further empirical investigations. The paper is thus a prolegomenon to a research program on Euclidean diagrammatic reasoning at the crossroads of logic, philosophy and cognitive science.  相似文献   
6.
Chromosome classification and karyotype establishment are important procedures for genetic diseases diagnosis. Various computer-aided systems have been developed to automate this tedious and time consuming task, which is performed manually in most cytogenetic laboratories. This paper provides a comprehensive review of past and recent research in the area of automatic chromosome classification systems. We start by reviewing methods for feature extraction, followed by a neural network based chromosome classifiers survey. We sum-up various techniques and methods in this area of research and discuss important issues and outcomes within each study for both chromosome feature extraction and classification. Although the ANN based chromosome classifiers are the main topic of this survey, a number of classifiers based on other algorithms are exposed to give an overall idea about additional techniques employed in chromosome classification.  相似文献   
7.
In recent times, Internet of Things (IoT) and Cloud Computing (CC) paradigms are commonly employed in different healthcare applications. IoT gadgets generate huge volumes of patient data in healthcare domain, which can be examined on cloud over the available storage and computation resources in mobile gadgets. Chronic Kidney Disease (CKD) is one of the deadliest diseases that has high mortality rate across the globe. The current research work presents a novel IoT and cloud-based CKD diagnosis model called Flower Pollination Algorithm (FPA)-based Deep Neural Network (DNN) model abbreviated as FPA-DNN. The steps involved in the presented FPA-DNN model are data collection, preprocessing, Feature Selection (FS), and classification. Primarily, the IoT gadgets are utilized in the collection of a patient’s health information. The proposed FPA-DNN model deploys Oppositional Crow Search (OCS) algorithm for FS, which selects the optimal subset of features from the preprocessed data. The application of FPA helps in tuning the DNN parameters for better classification performance. The simulation analysis of the proposed FPA-DNN model was performed against the benchmark CKD dataset. The results were examined under different aspects. The simulation outcomes established the superior performance of FPA-DNN technique by achieving the highest sensitivity of 98.80%, specificity of 98.66%, accuracy of 98.75%, F-score of 99%, and kappa of 97.33%.  相似文献   
8.
Internet of Things (IoT) has become a major technological development which offers smart infrastructure for the cloud-edge services by the interconnection of physical devices and virtual things among mobile applications and embedded devices. The e-healthcare application solely depends on the IoT and cloud computing environment, has provided several characteristics and applications. Prior research works reported that the energy consumption for transmission process is significantly higher compared to sensing and processing, which led to quick exhaustion of energy. In this view, this paper introduces a new energy efficient cluster enabled clinical decision support system (EEC-CDSS) for embedded IoT environment. The presented EEC-CDSS model aims to effectively transmit the medical data from IoT devices and perform accurate diagnostic process. The EEC-CDSS model incorporates particle swarm optimization with levy distribution (PSO-L) based clustering technique, which clusters the set of IoT devices and reduces the amount of data transmission. In addition, the IoT devices forward the data to the cloud where the actual classification procedure is performed. For classification process, variational autoencoder (VAE) is used to determine the existence of disease or not. In order to investigate the proficient results analysis of the EEC-CDSS model, a wide range of simulations was carried out on heart disease and diabetes dataset. The obtained simulation values pointed out the supremacy of the EEC-CDSS model interms of energy efficiency and classification accuracy.  相似文献   
9.
In the recent years, microarray technology gained attention for concurrent monitoring of numerous microarray images. It remains a major challenge to process, store and transmit such huge volumes of microarray images. So, image compression techniques are used in the reduction of number of bits so that it can be stored and the images can be shared easily. Various techniques have been proposed in the past with applications in different domains. The current research paper presents a novel image compression technique i.e., optimized Linde–Buzo–Gray (OLBG) with Lempel Ziv Markov Algorithm (LZMA) coding technique called OLBG-LZMA for compressing microarray images without any loss of quality. LBG model is generally used in designing a local optimal codebook for image compression. Codebook construction is treated as an optimization issue and can be resolved with the help of Grey Wolf Optimization (GWO) algorithm. Once the codebook is constructed by LBG-GWO algorithm, LZMA is employed for the compression of index table and raise its compression efficiency additionally. Experiments were performed on high resolution Tissue Microarray (TMA) image dataset of 50 prostate tissue samples collected from prostate cancer patients. The compression performance of the proposed coding esd compared with recently proposed techniques. The simulation results infer that OLBG-LZMA coding achieved a significant compression performance compared to other techniques.  相似文献   
10.
Knee Osteoarthritis (KOA) is a degenerative knee joint disease caused by ‘wear and tear’ of ligaments between the femur and tibial bones. Clinically, KOA is classified into four grades ranging from 1 to 4 based on the degradation of the ligament in between these two bones and causes suffering from impaired movement. Identifying this space between bones through the anterior view of a knee X-ray image is solely subjective and challenging. Automatic classification of this process helps in the selection of suitable treatment processes and customized knee implants. In this research, a new automatic classification of KOA images based on unsupervised local center of mass (LCM) segmentation method and deep Siamese Convolutional Neural Network (CNN) is presented. First-order statistics and the GLCM matrix are used to extract KOA anatomical Features from segmented images. The network is trained on our clinical data with 75 iterations with automatic weight updates to improve its validation accuracy. The assessment performed on the LCM segmented KOA images shows that our network can efficiently detect knee osteoarthritis, achieving about 93.2% accuracy along with multi-class classification accuracy of 72.01% and quadratic weighted Kappa of 0.86.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号