首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
一般工业技术   2篇
自动化技术   3篇
  2023年   1篇
  2022年   4篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
International Journal of Information Security - Context-aware network logging is becoming more prevalent for enterprise networks, data centers, and forensics. Monitoring agents are strategically...  相似文献   
2.
Software-defined network (SDN) becomes a new revolutionary paradigm in networks because it provides more control and network operation over a network infrastructure. The SDN controller is considered as the operating system of the SDN based network infrastructure, and it is responsible for executing the different network applications and maintaining the network services and functionalities. Despite all its tremendous capabilities, the SDN face many security issues due to the complexity of the SDN architecture. Distributed denial of services (DDoS) is a common attack on SDN due to its centralized architecture, especially at the control layer of the SDN that has a network-wide impact. Machine learning is now widely used for fast detection of these attacks. In this paper, some important feature selection methods for machine learning on DDoS detection are evaluated. The selection of optimal features reflects the classification accuracy of the machine learning techniques and the performance of the SDN controller. A comparative analysis of feature selection and machine learning classifiers is also derived to detect SDN attacks. The experimental results show that the Random forest (RF) classifier trains the more accurate model with 99.97% accuracy using features subset by the Recursive feature elimination (RFE) method.  相似文献   
3.
In defense-in-depth, humans have always been the weakest link in cybersecurity. However, unlike common threats, social engineering poses vulnerabilities not directly quantifiable in penetration testing. Most skilled social engineers trick users into giving up information voluntarily through attacks like phishing and adware. Social Engineering (SE) in social media is structurally similar to regular posts but contains malicious intrinsic meaning within the sentence semantic. In this paper, a novel SE model is trained using a Recurrent Neural Network Long Short Term Memory (RNN-LSTM) to identify well-disguised SE threats in social media posts. We use a custom dataset crawled from hundreds of corporate and personal Facebook posts. First, the social engineering attack detection pipeline (SEAD) is designed to filter out social posts with malicious intents using domain heuristics. Next, each social media post is tokenized into sentences and then analyzed with a sentiment analyzer before being labelled as an anomaly or normal training data. Then, we train an RNN-LSTM model to detect five types of social engineering attacks that potentially contain signs of information gathering. The experimental result showed that the Social Engineering Attack (SEA) model achieves 0.84 in classification precision and 0.81 in recall compared to the ground truth labeled by network experts. The experimental results showed that the semantics and linguistics similarities are an effective indicator for early detection of SEA.  相似文献   
4.
Internet of Things (IoT) devices work mainly in wireless mediums; requiring different Intrusion Detection System (IDS) kind of solutions to leverage 802.11 header information for intrusion detection. Wireless-specific traffic features with high information gain are primarily found in data link layers rather than application layers in wired networks. This survey investigates some of the complexities and challenges in deploying wireless IDS in terms of data collection methods, IDS techniques, IDS placement strategies, and traffic data analysis techniques. This paper’s main finding highlights the lack of available network traces for training modern machine-learning models against IoT specific intrusions. Specifically, the Knowledge Discovery in Databases (KDD) Cup dataset is reviewed to highlight the design challenges of wireless intrusion detection based on current data attributes and proposed several guidelines to future-proof following traffic capture methods in the wireless network (WN). The paper starts with a review of various intrusion detection techniques, data collection methods and placement methods. The main goal of this paper is to study the design challenges of deploying intrusion detection system in a wireless environment. Intrusion detection system deployment in a wireless environment is not as straightforward as in the wired network environment due to the architectural complexities. So this paper reviews the traditional wired intrusion detection deployment methods and discusses how these techniques could be adopted into the wireless environment and also highlights the design challenges in the wireless environment. The main wireless environments to look into would be Wireless Sensor Networks (WSN), Mobile Ad Hoc Networks (MANET) and IoT as this are the future trends and a lot of attacks have been targeted into these networks. So it is very crucial to design an IDS specifically to target on the wireless networks.  相似文献   
5.
Enhancement in wireless networks had given users the ability to use the Internet without a physical connection to the router. Almost every Internet of Things (IoT) devices such as smartphones, drones, and cameras use wireless technology (Infrared, Bluetooth, IrDA, IEEE 802.11, etc.) to establish multiple inter-device connections simultaneously. With the flexibility of the wireless network, one can set up numerous ad-hoc networks on-demand, connecting hundreds to thousands of users, increasing productivity and profitability significantly. However, the number of network attacks in wireless networks that exploit such flexibilities in setting and tearing down networks has become very alarming. Perpetrators can launch attacks since there is no first line of defense in an ad hoc network setup besides the standard IEEE802.11 WPA2 authentication. One feasible countermeasure is to deploy intrusion detection systems at the edge of these ad hoc networks (Network-based IDS) or at the node level (Host-based IDS). The challenge here is that there is no readily available benchmark data available for IoT network traffic. Creating this benchmark data is very tedious as IoT can work on multiple platforms and networks, and crafting and labelling such dataset is very labor-intensive. This research aims to study the characteristics of existing datasets available such as KDD-Cup and NSL-KDD, and their suitability for wireless IDS implementation. We hypothesize that network features are parametrically different depending on the types of network and assigning weight dynamically to these features can potentially improve the subsequent threat classifications. This paper analyses packet and flow features for the data packet captured on a wireless network rather than a wired network. Combining domain heuristcs and early classification results, the paper had identified 19 header fields exclusive to wireless network that contain high information gain to be used as ML features in Wireless IDS.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号