首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
能源动力   1篇
自动化技术   1篇
  2016年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
An experimental investigation was conducted to explore the maximum heat transfer in a serpentine shaped microchannel by varying the hydraulic diameter, flow rates and with influence of Al2O3 nanofluid. Microconvection is an important area in heat transport phenomena. Surface area is one of the important factors in high heat transfer in a microchannel heat exchanger. In this study, serpentine shaped microchannels of hydraulic diameters 810, 830, 860, and 890 μm are analyzed for the optimizing the hydraulic diameter to get enhanced thermal performance of the microchannel. A copper material microchannel having length a of 70 mm is used. Flow rate also varied from 1 lpm (Litres per minute) to 3.5 lpm for optimization with nanofluid as a medium. From numerical study it is observed that as the hydraulic diameter decreases from 890 μm to 810 μm the pressure drop increases with a decrease in hydraulic diameter. Also as heat input to the microchannel increases from 5 watts to 70 watts. From analysis it is observed that the hydraulic diameter of the microchannel is a major factor in microchannel heat transfer which is dependent on flow rate of fluid in the microchannel. The results also show that suspended Al2O3 nanoparticles in fluids have enhanced heat transfer when compared to the base fluid.  相似文献   
2.
八月,炎热的夏季,悠闲的假期,走出校门的毕业生们一定开始怀念曾经的校园生活,还有同学们之间的深厚友谊。那么,就请你拿出珍藏着的往日照片,一起来做我们的青春纪念册……  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号