首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   65篇
  国内免费   3篇
综合类   93篇
化学工业   104篇
建筑科学   61篇
水利工程   13篇
无线电   1篇
一般工业技术   9篇
自动化技术   1篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   8篇
  2016年   9篇
  2015年   12篇
  2014年   9篇
  2013年   12篇
  2012年   13篇
  2011年   25篇
  2010年   25篇
  2009年   19篇
  2008年   17篇
  2007年   15篇
  2006年   18篇
  2005年   23篇
  2004年   15篇
  2003年   14篇
  2002年   13篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   1篇
  1995年   2篇
  1994年   3篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
1.
在温度35℃、pH=10条件下,对比研究了14d内剩余污泥在KOH、NaOH、Ca(OH)2和Na2CO3这4种碱性条件下的水解产酸性能、脱水性能、氨氮和正磷酸释放情况以及污泥减量情况。结果表明:剩余污泥在4种碱性条件下表现出不同的水解产酸能力、脱水性能、以及污泥减量情况。污泥水解能力排序为Na2CO3>NaOH≈KOH>Ca(OH)2;产酸能力排序为NaOH>KOH≈Na2CO3>Ca(OH)2;脱水性能排序为Ca(OH)2>Na2CO3>NaOH≈KOH,氨氮和正磷酸盐释放量排序均为为Na2CO3>NaOH≈KOH>Ca(OH)2。剩余污泥在Na2CO3条件下挥发性悬浮固体(VSS)去除率最高;但在NaOH条件下总悬浮固体(TSS)去除率最高。  相似文献   
2.
为了研究厌氧-好氧工艺处理垃圾渗滤液的脱氮性能,采用ASBR联合脉冲进水SBR(脉冲SBR)处理高氨氮实际垃圾渗滤液。ASBR的水力停留时间为2d;中间水箱调节脉冲SBR的进水C/N(3~5)和NH4+-N浓度;脉冲SBR采用3次等量进水模式,运行周期分为4个缺氧段和3个好氧段,不投加外碳源,缺氧4利用污泥内碳源进行反硝化。结果表明,串联运行时期(157d)系统获得了高效的脱氮性能。ASBR进水COD为7 338~10 445mg.L-1,去除率在83%以上;脉冲SBR进水NH4+-N浓度分4个阶段逐步提高至912.0±41.7mg.L-1,总氮(TN)去除率在90%以上,出水总氮小于40mg.L-1;系统COD和总氮去除率分别在87%和97%以上。单个缺氧4进程内的内源反硝化速率(DNR)会由快变慢,而其平均理论内源反硝化速率(TDNRm)达到了1.531mgN.h-1.gMLVSS-1。在不使用物化预处理和不投加外碳源的情况下实现了对渗滤液的深度脱氮。  相似文献   
3.
高氨氮垃圾渗滤液SBR法短程深度生物脱氮   总被引:4,自引:3,他引:4       下载免费PDF全文
以实际垃圾填埋场渗滤液为研究对象,应用SBR系统对该类废水短程生物脱氮的可行性进行研究,重点考察了短程生物脱氮实现、稳定及系统的脱氮性能.结果表明,经过95天的运行,SBR系统成功实现并维持了稳定短程生物脱氮,平均亚硝积累率在92.5%以上.获得了稳定的脱氮性能,NH4+-N,TN平均去除率分别在97.2%和91.7%以上.DO、ORP和pH曲线的特征点能够准确判断硝化和反硝化终点,可作为SBR处理垃圾渗滤液短程生物脱氮过程的控制参数.相对于氨氧化菌,亚硝酸盐氧化菌对FA、FNA更敏感,因此两者协同作用抑制亚硝酸盐氧化菌活性,再辅以过程控制,能够准确判断硝化终点,实现NOB从系统硝化菌群中逐渐被淘洗,AOB成为优势菌种的目标,这是系统长期维持稳定短程生物脱氮的决定因素,FISH检测结果证明了这一点.  相似文献   
4.
对于有污泥厌氧消化系统的污水处理厂,传统方法将污泥消化液直接回流到污水厂处理工艺前端.由于污泥消化液氨氖浓度高,C/N比低,旁侧处理后再回流到污水厂主反应区,可以节省投资和运行费用,提高污水厂脱氮效果.因此单独处理污泥消化液是常规工艺的有效补充.本文分析归纳了污泥消化液旁侧处理的必要性,阐述了目前各种消化液处理技术的优缺点和实际应用情况,并提出污泥消化液旁侧生物处理技术的发展趋势.  相似文献   
5.
N2O是一种重要的温室气体.微生物的生物硝化反硝化过程是N2O产生的主要来源.从微生物学的角度阐述了脱氮过程中N2O的产生过程,并分析了不同脱氮过程中各菌种对N2O产生过程的作用.硝化过程中N2O主要产生于氨氧化细菌的氨氧化过程,亚硝酸盐氧化细菌的存在可以减少N2O的产量;反硝化过程中亚硝酸盐的积累,低氧和碳源不足都会导致N2O产生量的增加;另外,其他一些参与氮循环的微生物也会产生N2O.文章最后给出了污水脱氮过程中N2O减量化的策略以及今后研究的方向.  相似文献   
6.
In this study,four sequencing batch reactors(SBR),with the sludge retention time(SRT)of 5,10,20 and 40 d,were used to treat domestic wastewater,and the effect of SRT on nitrite accumulation in the biological nitrogen removal SBR was investigated.The real-time control strategy based on online parameters,such as pH,dissolved oxygen(DO)and oxidation reduction potential(ORP),was used to regulate the nitrite accumulation in SBR. The model-based simulation and experimental results showed that with the increase of SRT,longer time was needed to achieve high level of nitritation.In addition,the nitrite accumulation rate(NAR)was higher when the SRT was relatively shorter during a 112-day operation.When the SRT was 5 d,the system was unstable with the mixed liquor suspended solids(MLSS)decreased day after day.When the SRT was 40 d,the nitrification process was significantly inhibited.SRT of 10 to 20 d was more suitable in this study.The real-time control strategy combined with SRT control in SBR is an effective method for biological nitrogen removal via nitrite from wastewater.  相似文献   
7.
低氧条件下生物反硝化过程中N2O的产量   总被引:4,自引:0,他引:4       下载免费PDF全文
利用SBR反应器,控制曝气量为0.3 L·min-1,通过改变N2∶O2比例,调节反硝化过程中DO浓度,以连续投加乙醇作为反硝化碳源,考察了低氧条件下NO-3N反硝化过程及N2O的产量。结果表明,DO对反硝化菌的活性具有明显的抑制作用。DO由0增至0.7 mg·L-1,NO-3N还原速率由18.12 mg N·(g MLSS)-1·h-1降至11.37 mg N·( gMLSS)-1·h-1,系统N2O产量由0.23 mg·L-1增至1.74 mg·L-1。其原因为:(1)较高的NO-2N浓度导致系统反硝化速率降低,N2O积累并释放;(2)DO对N2O还原酶活性具有明显的抑制作用。降低缺氧-好氧生物脱氮过程中缺氧反应器内部DO含量,是减少生物脱氮过程中N2O产量的关键因素。  相似文献   
8.
反硝化除磷系统可实现氮、磷的同步去除,但在处理实际低C/N污水时,常需补充碳源以解决碳源不足的问题。采用A~2/O-BCO(anaerobic anoxic oxic-biological contact oxidation)反硝化除磷系统,通过投加两种常用的外碳源控制进水C/N在4.3左右,考察碳源类型(丙酸钠、乙酸钠)对A~2/O-BCO系统长期运行效果的影响,并采用批次试验进一步探究不同外加碳源条件下活性污泥的内碳源贮存和利用特性。结果表明:碳源种类的变化会改变微生物的底物贮存和利用特性,进而影响系统的脱氮除磷效果。当采用丙酸钠为外加碳源时,PO43--P去除效果稳定在94%左右,实现了磷的高效去除,但TIN的去除率仅为70.82%;而以乙酸钠为外加碳源时,系统TIN的平均去除率可以达到74%,但磷的出水浓度出现波动现象,平均去除率仅为89.90%。碳源转化分析表明,厌氧条件下,进水丙酸钠含量增多,PHV的合成比例增加,相反,乙酸钠含量增多,PHB合成比例增多;缺氧条件下,DPAOs对PHB和PHV的降解效果与其含量相关,丙酸钠作为外碳源时,PHV的降解速率高且微生物产能效率高,因此PO43--P吸收速率较快。此外,本文提出了不同外加碳源条件下系统的优化运行策略。  相似文献   
9.
为了考察在盐度影响下亚硝酸型反硝化动力学特性,采用长期处理垃圾渗滤液的SBR反应器内具有良好短程生物脱氮特性的活性污泥进行亚硝酸型反硝化批次试验,通过函数拟合确立动力学方程及动力学参数,研究结果表明:盐度的突升或突降都会使比反硝化速率减慢,并且影响程度随初始ρ(NO2--N)的增加而增大,在盐度为10 g/L,初始ρ(NO2--N)为100 mg/L时,比反硝化速率(以N计)达最大值16.28 mg/(gVSS·h).活性污泥系统中微生物的比反硝化特性在各盐度下均符合Andrews模型,且盐度的升高和降低会使系统的最大比反硝化速率μmax和半饱和常数Ks下降,抑制常数Ki上升.在10 g/L盐度下,μmax(以NO2--N计)=22.57 mg/(gVSS·h),Ks=20.71 mg/L,Ki,min=613.32 mg/L.  相似文献   
10.
体积比对分段进水工艺处理低浓度废水性能的影响   总被引:1,自引:0,他引:1  
采用改良A2/O四点分段进水工艺处理低浓度、低碳氮比城市生活污水.在HRT为8.7 h、SRT为15 d、污泥回流比为75%、进水流量分配比为20:35:35:10、好氧段ρ(DO)为1~1.5 mg/L条件下,通过调整不同的厌氧/缺氧/好氧体积比,分析体积比对污染物去除性能的影响.结果表明:不同的体积比对COD、氨氮的去除基本无影响,但对TN、TP去除影响较大.当厌氧/缺氧/好氧体积比为4:8:10时,对污染物去除效果最佳,出水COD、氨氮、总氮、总磷质量浓度分别为28.12、0.58、9.26、0.43 mg/L,进水碳源有效利用率达72.4%.通过逐步减少好氧段体积以提高缺氧段体积的策略,可使进水碳源在各缺氧段或厌氧段被充分利用,同时有利于反硝化除磷菌的富集,DPAOs最高比例为20.9%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号