首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
综合类   1篇
一般工业技术   1篇
原子能技术   5篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2014年   2篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
为满足核辐射探测器输出脉冲信号数据采集的需求,基于西门子PLC(S7-200)高速计数器HC4、HC5,研发了核脉冲计数数据采集系统。根据S7-200内嵌高速计数器原理,设计了周期脉冲计数数据采集实验,实验发现符合TTL标准的脉冲信号并不一定能被PLC高速计数器正确进行计数率测量。为此特别设计的甄别电路,满足了核辐射探测器输出信号经过放大器与甄别电路后转换为适合S7-200高速计数器HC4和HC5的输入信号。此外利用S7-200丰富的指令系统,执行核脉冲计数率连续测量和数据处理,并通过文本显示单元完成系统数据实时显示,实现了对核脉冲计数数据采集。  相似文献   
3.
贺三军  曹舟  周剑良  赵修良 《硅谷》2014,(14):38-39
目前在实际工业应用中,料位测量仪器不仅要能应用于一般的工业现场且要求能适应复杂的工业环境。这些复杂的工业环境大都伴随着高温、高压、强腐蚀、强磁场、强烟雾等恶劣工况,因此对料位测量仪器的要求也越来越高。PLC是专门应用于工业控制的计算机。文章将PLC技术引入核子液位测控系统中,相对传统的二次仪表系统而言增加了其抗干扰性和稳定性且开发周期短,能实现对液位的连续测量,提供了在线显示、参数输入、数据存储以及报警功能。  相似文献   
4.
综述了重离子治疗三维剂量验证方法的研究进展。重点介绍了凝胶剂量计、PET在线验证和电离室阵列实现重离子治疗三维剂量验证的优缺点,探讨了重离子治疗中三维剂量验证技术的发展趋势。研究认为,目前通过研制三维电离室阵列,可以真正快速准确地实现重离子治疗的三维剂量验证。  相似文献   
5.
快中子能谱是基于散裂中子源开展大气中子单粒子效应研究的关键输入参数,在线测量宽能区快中子能谱在近散裂靶位置面临飞行时间法不确定度大、中子通量高、本底干扰强等问题。设计了反冲质子望远镜(RPT)系统,利用Geant4模拟了20~200 MeV中子轰击不同厚度聚乙烯转换靶产生的反冲质子产额、角分布以及能谱,为优化探测系统设计提供了指导依据。通过模拟硅探测器与新型快响应CLLB闪烁体组成的二重符合RPT系统对入射中子的响应,分析了影响探测系统探测效率和能量分辨率的因素,确定了聚乙烯转换靶厚度为1 mm、符合质子探测器摆放角度为26.6°和探测器尺寸等重要参数,得到了RPT系统的中子响应函数矩阵,并计算了其探测效率达10-5,对高中子通量和复杂本底干扰环境下的快中子能谱在线测量具有指导意义和参考价值。  相似文献   
6.
ZnS(Ag)涂层厚度会影响盈。Rn/盟。Rn绝对测量小闪烁室的探测效率.用^241Amα电镀参考源对厚度为10mg/cm2的ZnS(Ag)涂层a探测效率进行了实验验证.分别采用解析方法与MCNP模拟方法计算了相对立体角修正因子,讨论了空气层对α粒子的吸收修正,分析了不确定度来源.实验结果表明,10mg/cm2 ZnS(Ag)涂层对“粒子的探测效率在102.4%~103.1%之间,不确定度小于5.44%.在实验不确定度范围内,可认为其对“粒子的探测效率为100%.实验证明了“222Rn/220RnRn绝对测量小闪烁室内采用10mg/cm2厚的ZnS(鲰)涂层是可行的.  相似文献   
7.
为快速准确地实现碳离子治疗计划的三维剂量验证,采用有机玻璃PMMA(聚甲基丙烯酸甲酯)为电离室室壁和水等效模体,设计了一种三维电离室阵列,并通过Geant4软件对三维电离室阵列的结构设计进行了深入研究与验证。首先通过模拟不同能量碳离子束在水和PMMA模体中沉积的剂量分布,计算了PMMA模体的水等效厚度系数;然后研究了三维电离室阵列中电离腔室间的距离及信号导线对其剂量测量准确度的影响;最后模拟并验证了碳离子束在三维电离室阵列中沉积的剂量分布。结果表明:PMMA模体的水等效厚度系数为1.151;相邻电离腔室间的信号串扰主要来源于前侧的电离腔室,且串扰程度与电离腔室间距呈反比,间距为1 mm时串扰程度占电离腔室内剂量的3%,间距为30 mm时串扰影响可完全消除;信号导线对后侧电离腔室内剂量的干扰影响约为1%。将碳离子束在三维电离室阵列中沉积的剂量分布与PMMA模体中的剂量分布进行对比,碳离子束的射程具有良好的一致性,偏差为0.5 mm。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号