首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   10篇
  国内免费   2篇
化学工业   50篇
金属工艺   8篇
机械仪表   3篇
建筑科学   5篇
能源动力   9篇
轻工业   12篇
无线电   3篇
一般工业技术   60篇
冶金工业   21篇
原子能技术   13篇
自动化技术   9篇
  2024年   4篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   10篇
  2012年   12篇
  2011年   12篇
  2010年   11篇
  2009年   18篇
  2008年   13篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   9篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   7篇
  1989年   2篇
  1987年   2篇
  1983年   3篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1931年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
1.
The densities of oleic acid were measured over the temperature range from (293 to 459) K at atmospheric pressure using a densimeter based on the modified hydrostatic weighing method. The dynamic viscosities of the same oleic acid sample were measured using a capillary viscometer (VPZ-2 m) in the range from (293 to 363) K at atmospheric pressure. The combined expanded uncertainty of the density, atmospheric pressure, viscosity, and temperature measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15%, 1.0%, 3.5%, and 15 mK, respectively. The values of uncertainty for density and viscosity include the effects of purity and calibration (total expanded uncertainty). These experimental data were used to develop wide-range correlations for the density and viscosity based on theoretically confirmed Arrhenius–Andrade and Vogel-Tamman-Fulcher (VTF) models. The value of the glass temperature ( T g= 179.78 K.) for the oleic acid was estimated using the VTF parameters derived from the present viscosity measurements. To additionally validate the reliability of the measured density data, the same oleic acid samples were measured using the pycnometric method. The present study showed that the densities measured using the modified hydrostatic weighing densimeter (HWD) agree with the values obtained using the pycnometric method within 0.09% for Sample 1 and 0.25% for Sample 2.  相似文献   
2.
The osteogenic growth peptide (OGP) is a 14mer mitogen of osteoblastic and fibroblastic cells. Physiologically, OGP is present in high abundance in human and other mammalian sera. Most of the serum OGP is complexed noncovalently to heat sensitive, high molecular weight OGP-binding proteins (OGPBPs). Changes in serum OGP levels that follow bone marrow ablation and the low doses of exogenous OGP required for the stimulation of bone formation suggest a regulatory role for the OGPBPs. In the present work, the OGP binding activity was monitored by competitive binding to [3-125I(Tyr10)]-sOGP and the corresponding complexes were demonstrated on nondenaturing cathodic polyacrylamide gel electrophoresis. We show that OGP binds to both native and activated human plasma alpha 2-macroglobulin (alpha 2M). alpha 2M was also immunoidentified in reduced and nonreduced SDS-polyacrylamide gel electrophoresis of OGP-affinity purified plasma-derived proteins. Immunoreactive OGP was detected in commercial preparations of both forms of alpha 2M; OGP was purified to homogeneity from the commercial preparation of activated alpha 2M. In MC3T3 E1 cells, native alpha 2M, at concentrations < 50 ng/mL, had a substantially increased mitogenic effect in the presence of synthetic, native-like, OGP (sOGP). Similar amounts of activated alpha 2M inhibited the sOGP proliferative effect. These results suggest that the native alpha 2M enhances the immediate availability of OGP to its target cells. Activated alpha 2M may participate in the removal of OGP from the system.  相似文献   
3.
4.
Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering.  相似文献   
5.
The authors propose a method of providing stability of the coefficient of friction of a disk brake. The method is based on the use of combination of friction materials in the force pattern of working elements of a disk brake. These friction materials interact with a brake disk and have individual level of loading. The article theoretically substantiates the possibility of the impact of the integral properties of a combination of friction materials involved in the force interaction on vehicle braking parameters. The reasonability of the proposed method is proved by the results of the experimental research. A brake-pad (lining) design has been developed to implement this method.  相似文献   
6.
Fly ashes are obtained from thermal power plants and they are pozzolanic materials, which can act as partial replacement material for both portland cement and fine aggregate. With their economical advantages and potential for improving fresh and hardened concrete performance, they have some benefits for using in concrete industry. In this study, the objective was to find the efficiency factors of Turkish C and F-type fly ashes and to compare their properties. Three different cement dosages were used (260, 320, 400 kg/m3), two different ratios (10% and 17%) of cement reduced from the control concretes and three different ratios (depending on cement reduction ratio) of fly ash were added into the mixtures. At the ages of 28 and 90 days, compressive strength, modulus of elasticity and ultrasound velocity tests were carried out. From the compressive strength results, the k efficiency factors of C and F-type fly ashes were obtained. As a result, it is seen that efficiency factors of the concrete produced by the replacement of F and C type fly ashes with cement increase with the increase in cement dosage and concrete age.  相似文献   
7.
Polyethersulfone (PES) hollow fiber membranes were fabricated via the dry‐wet phase inversion spinning technique, aiming to produce an asymmetric, micro porous ultrafiltration hollow‐fiber specifically for hemodialysis membrane. The objective of this study is to investigate the effect of spinning conditions on the morphological and permeation properties of the fabricated membrane. Among the parameters that were studied in this work are air gap distance, dope extrusion rate, bore fluid flow rate, and the take‐up speed. The contact angle was measured to determine the hydrophilicity of the fibers. Membrane with sufficient hydrophilicity properties is desired for hemodialysis application to avoid fouling and increase its biocompatibility. The influences of the hollow fiber's morphology (i.e., diameter and wall thickness) on the performance of the membranes were evaluated by pure water flux and BSA rejection. The experimental results showed that the dope extrusion rate to bore fluid flow rate ratio should be maintained at 1:1 ratio to produce a perfectly rounded asymmetric hollow fiber membrane. Moreover, the flux of the hollow fiber spun at higher air gap distance had better flux than the one spun at lower air gap distance. Furthermore, spinning asymmetric hollow fiber membranes at high air gap distance helps to produce a thin and porous skin layer, leading to a better flux but a relatively low percentage of rejection for BSA separation. Findings from this study would serve as primary data which will be a useful guide for fabricating a high performance hemodialysis hollow fiber membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43633.  相似文献   
8.
Partially hydrolyzed polyacrylamide (PHPA) is the most widely used polymer in enhanced oil recovery (EOR) applications. However, under conditions of high temperature and salinity, the PHPA molecules become hydrolyzed, causing a drastic reduction of the viscosity of the polymer solution due to the presence of negative charges, making the molecules more susceptible to interactions with cations. In this sense, in order to increase the stability of these polymers, an anionic monomer more resistant to cations such as 2-acrylamido-2-methylpropane sulfonic acid (AMPS) has been incorporated into the HPAM molecules. This work evaluated the thermal stability of a copolymer (acrylamide and AMPS - AN125) and a terpolymer (acrylamide, acrylate, and AMPS-FP5115) in the time course of 360 days. The tests were carried out in typical conditions of Brazilian offshore reservoirs, such as absence of oxygen, high temperature, and high salt concentration. The test method involved measurements of intrinsic viscosity in function of time and determination of the hydrolysis degree of the polymers by elemental analysis. The copolymer AN125 was more stable under the test conditions than the terpolymer FP 5115 due to the presence of a higher concentration of AMPS in the copolymer. The AMPS group was hydrolyzed to AA at a temperature of 100 °C, however, the increase in salt concentration delayed the onset of this degradation. The tests indicated that the presence of a higher AMPS content in the copolymer does not prevent the polymer from undergoing hydrolysis, but delays the polymer precipitation step in the solution.  相似文献   
9.
10.
In the present research it is reported the synthesis and characterization of CdS nanoparticles (NPs) prepared using carboxylic-functionalized poly (vinyl alcohol) (PVA) as the ligand via aqueous route at room temperature and ambient pressure. Different molar concentrations of carboxylic-PVA and PVA were investigated aiming at producing stable colloidal systems. Carboxylic-PVA was conjugated with BSA (bovine serum albumin) and used as capping ligand in the preparation of CdS nanocrystals. UV-visible spectroscopy, photoluminescence spectroscopy, and transmission electron microscopy were used to characterize the kinetics and the relative stability of polymer-capped CdS nanocrystals. The results have clearly indicated that the carboxylic-functionalized PVA was much more effective on nucleating and stabilizing colloidal CdS nanoparticles in aqueous suspensions compared to PVA. In addition, the CdS nanocrystals were obtained in the so-called “quantum-size confinement regime”, with the calculated average size below 4.0 nm and fluorescent activity. Thus, a novel simple route was successfully developed for synthesizing nanohybrids based on quantum dots and water-soluble chemically functionalized polymers with incorporated carboxylic moiety with the possibility of direct bioconjugation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号