首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2751篇
  免费   252篇
  国内免费   1篇
电工技术   29篇
综合类   29篇
化学工业   990篇
金属工艺   32篇
机械仪表   48篇
建筑科学   107篇
矿业工程   7篇
能源动力   83篇
轻工业   449篇
水利工程   50篇
石油天然气   5篇
无线电   134篇
一般工业技术   416篇
冶金工业   252篇
原子能技术   10篇
自动化技术   363篇
  2024年   15篇
  2023年   23篇
  2022年   127篇
  2021年   188篇
  2020年   108篇
  2019年   94篇
  2018年   104篇
  2017年   102篇
  2016年   121篇
  2015年   110篇
  2014年   148篇
  2013年   201篇
  2012年   159篇
  2011年   225篇
  2010年   136篇
  2009年   138篇
  2008年   144篇
  2007年   115篇
  2006年   84篇
  2005年   68篇
  2004年   51篇
  2003年   65篇
  2002年   59篇
  2001年   34篇
  2000年   36篇
  1999年   38篇
  1998年   71篇
  1997年   42篇
  1996年   29篇
  1995年   22篇
  1994年   22篇
  1993年   22篇
  1992年   14篇
  1991年   11篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   8篇
  1986年   8篇
  1985年   3篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   8篇
  1978年   2篇
  1977年   3篇
  1976年   7篇
  1975年   2篇
  1926年   1篇
排序方式: 共有3004条查询结果,搜索用时 15 毫秒
1.
2.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
3.
Bioactive ceramic scaffolds for bone regeneration consisting of a three-dimensional mesh of interpenetrating struts with square section were fabricated via Digital Light Processing (DLP). The ability of the technique to manufacture 3D porous structures from β-tricalcium phosphate (β-TCP) powders with different dimensions of struts and pores was evaluated, identifying the possibilities and limitations of the manufacturing process. Small pore sizes were found to seriously complicate the elimination of excess slurry from the scaffold’s innermost pores. The effect of the strut/pore size on the mechanical performance of the scaffolds under compressive stresses was also evaluated, but no significant influence was found. Under compressive stresses, the structures resulted weaker when tested perpendicularly to the printing plane due to interlayer shear failure. Interlayer superficial grooves are proposed as potential failure-controlling defects, which could also explain the lack of a Weibull size effect on the mechanical strength of the fabricated DLP scaffolds.  相似文献   
4.
Fibroblast growth factor 2 (FGF-2), ubiquitously expressed in humans and mice, is functionally involved in cell growth, migration and maturation in vitro and in vivo. Based on the same mRNA, an 18-kilo Dalton (kDa) FGF-2 isoform named FGF-2 low molecular weight (FGF-2LMW) isoform is translated in humans and rodents. Additionally, two larger isoforms weighing 21 and 22 kDa also exist, summarized as the FGF-2 high molecular weight (FGF-2HMW) isoform. Meanwhile, the human FGF-2HMW comprises a 22, 23, 24 and 34 kDa protein. Independent studies verified a specific intracellular localization, mode of action and tissue-specific spatiotemporal expression of the FGF-2 isoforms, increasing the complexity of their physiological and pathophysiological roles. In order to analyze their spectrum of effects, FGF-2LMW knock out (ko) and FGF-2HMWko mice have been generated, as well as mice specifically overexpressing either FGF-2LMW or FGF-2HMW. So far, the development and functionality of the cardiovascular system, bone formation and regeneration as well as their impact on the central nervous system including disease models of neurodegeneration, have been examined. This review provides a summary of the studies characterizing the in vivo effects modulated by the FGF-2 isoforms and, thus, offers a comprehensive overview of its actions in the aforementioned organ systems.  相似文献   
5.
Connexin- and pannexin (Panx)-formed hemichannels (HCs) and gap junctions (GJs) operate an interaction with the extracellular matrix and GJ intercellular communication (GJIC), and on account of this they are involved in cancer onset and progression towards invasiveness and metastatization. When we deal with cancer, it is not correct to omit the immune system, as well as neglecting its role in resisting or succumbing to formation and progression of incipient neoplasia until the formation of micrometastasis, nevertheless what really occurs in the tumor microenvironment (TME), which are the main players and which are the tumor or body allies, is still unclear. The goal of this article is to discuss how the pivotal players act, which can enhance or contrast cancer progression during two important process: “Activating Invasion and Metastasis” and the “Avoiding Immune Destruction”, with a particular emphasis on the interplay among GJIC, Panx-HCs, and the purinergic system in the TME without disregarding the inflammasome and cytokines thereof derived. In particular, the complex and contrasting roles of Panx1/P2X7R signalosome in tumor facilitation and/or inhibition is discussed in regard to the early/late phases of the carcinogenesis. Finally, considering this complex interplay in the TME between cancer cells, stromal cells, immune cells, and focusing on their means of communication, we should be capable of revealing harmful messages that help the cancer growth and transform them in body allies, thus designing novel therapeutic strategies to fight cancer in a personalized manner.  相似文献   
6.
7.
The pathophysiology of Polycystic Ovary Syndrome (PCOS) is quite complex and different mechanisms could contribute to hyperandrogenism and anovulation, which are the main features of the syndrome. Obesity and insulin-resistance are claimed as the principal factors contributing to the clinical presentation; in normal weight PCOS either, increased visceral adipose tissue has been described. However, their role is still debated, as debated are the biochemical markers linked to obesity per se. Oxidative stress (OS) and low-grade inflammation (LGI) have recently been a matter of researcher attention; they can influence each other in a reciprocal vicious cycle. In this review, we summarize the main mechanism of radical generation and the link with LGI. Furthermore, we discuss papers in favor or against the role of obesity as the first pathogenetic factor, and show how OS itself, on the contrary, can induce obesity and insulin resistance; in particular, the role of GH-IGF-1 axis is highlighted. Finally, the possible consequences on vitamin D synthesis and activation on the immune system are briefly discussed. This review intends to underline the key role of oxidative stress and low-grade inflammation in the physiopathology of PCOS, they can cause or worsen obesity, insulin-resistance, vitamin D deficiency, and immune dyscrasia, suggesting an inverse interaction to what is usually considered.  相似文献   
8.
Activation of P2X7 signaling, due to high glucose levels, leads to blood retinal barrier (BRB) breakdown, which is a hallmark of diabetic retinopathy (DR). Furthermore, several studies report that high glucose (HG) conditions and the related activation of the P2X7 receptor (P2X7R) lead to the over-expression of pro-inflammatory markers. In order to identify novel P2X7R antagonists, we carried out virtual screening on a focused compound dataset, including indole derivatives and natural compounds such as caffeic acid phenethyl ester derivatives, flavonoids, and diterpenoids. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring and structural fingerprint clustering of docking poses from virtual screening highlighted that the diterpenoid dihydrotanshinone (DHTS) clustered with the well-known P2X7R antagonist JNJ47965567. A human-based in vitro BRB model made of retinal pericytes, astrocytes, and endothelial cells was used to assess the potential protective effect of DHTS against HG and 2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate (BzATP), a P2X7R agonist, insult. We found that HG/BzATP exposure generated BRB breakdown by enhancing barrier permeability (trans-endothelial electrical resistance (TEER)) and reducing the levels of ZO-1 and VE-cadherin junction proteins as well as of the Cx-43 mRNA expression levels. Furthermore, HG levels and P2X7R agonist treatment led to increased expression of pro-inflammatory mediators (TLR-4, IL-1β, IL-6, TNF-α, and IL-8) and other molecular markers (P2X7R, VEGF-A, and ICAM-1), along with enhanced production of reactive oxygen species. Treatment with DHTS preserved the BRB integrity from HG/BzATP damage. The protective effects of DHTS were also compared to the validated P2X7R antagonist, JNJ47965567. In conclusion, we provided new findings pointing out the therapeutic potential of DHTS, which is an inhibitor of P2X7R, in terms of preventing and/or counteracting the BRB dysfunctions elicited by HG conditions.  相似文献   
9.
10.
In this paper we compare the dynamics on the centre manifold of the solutions of an ill-posed Boussinesq equation with a well-posed version. We show that the dynamics in the centre manifold of the ill-posed equation tracks the dynamics of the well-posed equation. Our results give partial justification to the long-wave perturbation theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号