首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   916篇
  免费   66篇
  国内免费   6篇
电工技术   41篇
综合类   8篇
化学工业   236篇
金属工艺   36篇
机械仪表   30篇
建筑科学   44篇
矿业工程   3篇
能源动力   85篇
轻工业   84篇
水利工程   11篇
石油天然气   14篇
无线电   69篇
一般工业技术   143篇
冶金工业   50篇
原子能技术   4篇
自动化技术   130篇
  2024年   1篇
  2023年   13篇
  2022年   27篇
  2021年   58篇
  2020年   56篇
  2019年   71篇
  2018年   84篇
  2017年   69篇
  2016年   74篇
  2015年   41篇
  2014年   69篇
  2013年   98篇
  2012年   62篇
  2011年   47篇
  2010年   47篇
  2009年   37篇
  2008年   29篇
  2007年   20篇
  2006年   14篇
  2005年   6篇
  2004年   7篇
  2003年   7篇
  2002年   3篇
  2000年   3篇
  1999年   3篇
  1998年   16篇
  1997年   7篇
  1996年   4篇
  1994年   1篇
  1993年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有988条查询结果,搜索用时 15 毫秒
1.
2.
A new TiO2-containing bioactive glass and glass-ceramics based on 50SiO2-(45-X)CaO-(XTiO2)-5P2O5 system was designed using a sol–gel technique (where X = 5, 7.5 and 10 wt %). The roles of the crystallization behavior and physicochemical characteristics of the designed glass and glass-ceramics which were played in the introduction of TiO2 substitutions were investigated. Moreover, cell proliferation and differentiation were evaluated against human osteosarcoma cells (Saos-2). The TiO2/CaO replacements led to the formation of a stronger glass structure and thus increased thermal parameters and the chemical stabilization of the designed materials. The FTIR data confirmed the existence of Ti within the glass and glass-ceramics samples, and no remarkable effect on their chemical integrity was observed. The XRD patterns indicated that calcium-containing minerals, including Ca2SiO4,Ca3(PO4)2, Ca(Ti,Si)O5, CaTiSiO5, and Ca15(PO4)2·(SiO4)6 phases were developed as a role of structure/texture under the applied heat-treatment. The results of the cytotoxicity test proved that a safe sample dose is 12–50 μg/ml, at which cell viability is ≥ 85%. The cell differentiation determined by ALP test proved the superiority of glass-ceramics compared with their native glasses. Therefore, the obtained materials could be safely used as novel biocompatible materials for the regeneration of bone tissue.  相似文献   
3.
4.
Surface functionalization and modification including the grafting process are effective approaches to improve and enhance the reverse osmosis (RO) membrane performance. This work is aimed to synthesize grafted/crosslinked cellulose acetate (CA)/cellulose triacetate (CTA) blend RO membranes using N-isopropylacrylamide (N-IPAAm) as a monomer and N,N-methylene bisacrylamide (MBAAm) as a crosslinker. The morphology of these membranes was analyzed by scanning electron microscopy and their surface roughness was characterized by atomic force microscopy. The performance of these membranes was evaluated through measuring two major parameters of salt rejection and water flux using RO unit at variable operating pressures. It was noted that the surface average roughness obviously decreased from 148 nm for the pure CA/CTA blend membrane with 2.5% CTA to 110 nm and 87 nm for the grafted N-IPAAm and grafted/crosslinked N-IPAAM/MBAAm/CA/CTA-RO membranes, respectively. Moreover, the contact angle decreased from 51.98° to 47.6° and 43.8° after the grafting and crosslinking process. The salt rejection of the grafted CA/CTA-RO membrane by 0.1% N-IPAAm produced the highest value of 98.12% and the water flux was 3.29 L/m2h at 10 bar.  相似文献   
5.
6.
The discovery of eco-friendly, rapid, and cost-effective compounds to control diseases caused by microbes and insects are the main challenges. Herein, the magnesium oxide nanoparticles (MgO-NPs) are successfully fabricated by harnessing the metabolites secreted by Penicillium chrysogenum. The fabricated MgO-NPs were characterized using UV-Vis, XRD, TEM, DLS, EDX, FT-IR, and XPS analyses. Data showed the successful formation of crystallographic, spherical, well-dispersed MgO-NPs with sizes of 7–40 nm at a maximum wavelength of 250 nm. The EDX analysis confirms the presence of Mg and O ions as the main components with weight percentages of 13.62% and 7.76%, respectively. The activity of MgO-NPs as an antimicrobial agent was investigated against pathogens Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, and exhibited zone of inhibitions of 12.0 ± 0.0, 12.7 ± 0.9, 23.3 ± 0.8, 17.7 ± 1.6, and 14.7 ± 0.6 mm respectively, at 200 µg mL−1. The activity is decreased by decreasing the MgO-NPs concentration. The biogenic MgO-NPs exhibit high efficacy against different larvae instar and pupa of Anopheles stephensi, with LC50 values of 12.5–15.5 ppm for I–IV larvae instar and 16.5 ppm for the pupa. Additionally, 5 mg/cm2 of MgO-NPs showed the highest protection percentages against adults of Anopheles stephensi, with values of 100% for 150 min and 67.6% ± 1.4% for 210 min.  相似文献   
7.
Disruption of retinal pigment epithelial (RPE barrier integrity is a hallmark feature of various retinal blinding diseases, including diabetic macular edema and age-related macular degeneration, but the underlying causes and pathophysiology are not completely well-defined. One of the most conserved phenomena in biology is the progressive decline in mitochondrial function with aging leading to cytopathic hypoxia, where cells are unable to use oxygen for energy production. Therefore, this study aimed to thoroughly investigate the role of cytopathic hypoxia in compromising the barrier functionality of RPE cells. We used Electric Cell-Substrate Impedance Sensing (ECIS) system to monitor precisely in real time the barrier integrity of RPE cell line (ARPE-19) after treatment with various concentrations of cytopathic hypoxia-inducing agent, Cobalt(II) chloride (CoCl2). We further investigated how the resistance across ARPE-19 cells changes across three separate parameters: Rb (the electrical resistance between ARPE-19 cells), α (the resistance between the ARPE-19 and its substrate), and Cm (the capacitance of the ARPE-19 cell membrane). The viability of the ARPE-19 cells and mitochondrial bioenergetics were quantified with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and seahorse technology, respectively. ECIS measurement showed that CoCl2 reduced the total impedance of ARPE-19 cells in a dose dependent manner across all tested frequencies. Specifically, the ECIS program’s modelling demonstrated that CoCl2 affected Rb as it begins to drastically decrease earlier than α or Cm, although ARPE-19 cells’ viability was not compromised. Using seahorse technology, all three concentrations of CoCl2 significantly impaired basal, maximal, and ATP-linked respirations of ARPE-19 cells but did not affect proton leak and non-mitochondrial bioenergetic. Concordantly, the expression of a major paracellular tight junction protein (ZO-1) was reduced significantly with CoCl2-treatment in a dose-dependent manner. Our data demonstrate that the ARPE-19 cells have distinct dielectric properties in response to cytopathic hypoxia in which disruption of barrier integrity between ARPE-19 cells precedes any changes in cells’ viability, cell-substrate contacts, and cell membrane permeability. Such differences can be used in screening of selective agents that improve the assembly of RPE tight junction without compromising other RPE barrier parameters.  相似文献   
8.
Finite-time stability in dynamical systems theory involves systems whose trajectories converge to an equilibrium state in finite time. In this paper, we use the notion of finite-time stability to apply it to the problem of coordinated motion in multiagent systems. Specifically, we consider a group of agents described by fully actuated Euler–Lagrange dynamics along with a leader agent with an objective to reach and maintain a desired formation characterized by steady-state distances between the neighboring agents in finite time. We use graph theoretic notions to characterize communication topology in the network determined by the information flow directions and captured by the graph Laplacian matrix. Furthermore, using sliding mode control approach, we design decentralized control inputs for individual agents that use only data from the neighboring agents which directly communicate their state information to the current agent in order to drive the current agent to the desired steady state. Sliding mode control is known to drive the system states to the sliding surface in finite time. The key feature of our approach is in the design of non-smooth sliding surfaces such that, while on the sliding surface, the error states converge to the origin in finite time, thus ensuring finite-time coordination among the agents in the network. In addition, we discuss the case of switching communication topologies in multiagent systems. Finally, we show the efficacy of our theoretical results using an example of a multiagent system involving planar double integrator agents.  相似文献   
9.
In this paper, we present a family of optimal, in the sense of Kung–Traub’s conjecture, iterative methods for solving nonlinear equations with eighth-order convergence. Our methods are based on Chun’s fourth-order method. We use the Ostrowski’s efficiency index and several numerical tests in order to compare the new methods with other known eighth-order ones. We also extend this comparison to the dynamical study of the different methods.  相似文献   
10.
Hydrophilic coatings based on 3‐glicidoxy propyl trimethoxy silane (GPTMS) and polyethylene glycol (PEG) were prepared with the incorporation of tetramethoxysilane (TMOS) and silica nanoparticle colloidal suspension by a sol–gel process. Characterization of the coatings has been performed by Fourier Transform Infrared (FTIR) and Attenuated Total Reflectance Infrared (ATR‐IR) techniques. Morphological properties were characterized by Scanning Electron Microscopy (SEM). The distribution of Si atoms in the hybrid system was obtained by Si mapping. The particle size in sol solution of the coating was measured by light scattering analyzer. Optical properties were characterized by using UV–vis spectrophotometer. The hydrophilicity of the coating was determined by contact angle measurements, and also the results have been confirmed by surface energy and water uptake investigations. The obtained results indicate that the surfactants affected the contact angles remarkably but did not change the transparency. It has been found that applying silica nano particles leads to coatings with different properties than those using TMOS, while siloxane contents were the same in these two set of coatings. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5322–5329, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号