首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学工业   3篇
能源动力   2篇
轻工业   1篇
水利工程   2篇
一般工业技术   2篇
冶金工业   2篇
自动化技术   5篇
  2021年   4篇
  2019年   4篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
A real-time matching system for large fingerprint databases   总被引:11,自引:0,他引:11  
With the current rapid growth in multimedia technology, there is an imminent need for efficient techniques to search and query large image databases. Because of their unique and peculiar needs, image databases cannot be treated in a similar fashion to other types of digital libraries. The contextual dependencies present in images, and the complex nature of two-dimensional image data make the representation issues more difficult for image databases. An invariant representation of an image is still an open research issue. For these reasons, it is difficult to find a universal content-based retrieval technique. Current approaches based on shape, texture, and color for indexing image databases have met with limited success. Further, these techniques have not been adequately tested in the presence of noise and distortions. A given application domain offers stronger constraints for improving the retrieval performance. Fingerprint databases are characterized by their large size as well as noisy and distorted query images. Distortions are very common in fingerprint images due to elasticity of the skin. In this paper, a method of indexing large fingerprint image databases is presented. The approach integrates a number of domain-specific high-level features such as pattern class and ridge density at higher levels of the search. At the lowest level, it incorporates elastic structural feature-based matching for indexing the database. With a multilevel indexing approach, we have been able to reduce the search space. The search engine has also been implemented on Splash 2-a field programmable gate array (FPGA)-based array processor to obtain near-ASIC level speed of matching. Our approach has been tested on a locally collected test data and on NIST-9, a large fingerprint database available in the public domain  相似文献   
2.
Food Science and Biotechnology - Cheongguk-jang is a Korean traditional food produced by natural fermentation of boiled soybean. In cheongguk-jang, bacilli are dominant bacteria and produce highly...  相似文献   
3.
Generating cancelable fingerprint templates   总被引:5,自引:0,他引:5  
Biometrics-based authentication systems offer obvious usability advantages over traditional password and token-based authentication schemes. However, biometrics raises several privacy concerns. A biometric is permanently associated with a user and cannot be changed. Hence, if a biometric identifier is compromised, it is lost forever and possibly for every application where the biometric is used. Moreover, if the same biometric is used in multiple applications, a user can potentially be tracked from one application to the next by cross-matching biometric databases. In this paper, we demonstrate several methods to generate multiple cancelable identifiers from fingerprint images to overcome these problems. In essence, a user can be given as many biometric identifiers as needed by issuing a new transformation "key". The identifiers can be cancelled and replaced when compromised. We empirically compare the performance of several algorithms such as Cartesian, polar, and surface folding transformations of the minutiae positions. It is demonstrated through multiple experiments that we can achieve revocability and prevent cross-matching of biometric databases. It is also shown that the transforms are noninvertible by demonstrating that it is computationally as hard to recover the original biometric identifier from a transformed version as by randomly guessing. Based on these empirical results and a theoretical analysis we conclude that feature-level cancelable biometric construction is practicable in large biometric deployments  相似文献   
4.
The present study discusses the identification of virus transport parameters in groundwater from the virus concentration data using inverse procedure. The parameters are estimated by minimizing the deviations between the model predicted and experimentally observed virus concentrations. Model parameters are estimated from hypothetically generated virus concentration data by numerical inversion of the governing virus transport equation employing Levenberg-Marquardt optimization algorithm. The bias induced by the objective function on the parameter estimates is studied in detail by adding Gaussian noise to the hypothetically generated virus concentration data. Statistical analysis is performed for quantifying the bias in terms of sample mean and confidence intervals. The parameter estimation results indicate that while estimating two or more parameters simultaneously, the objective function induces an undue bias in the parameter estimates. It is also found that the induced bias is quite significant in case of inactivation parameters even at lower noise levels. The optimization algorithm is also applied to estimate the transport parameters from the virus concentration data of a column experiment.  相似文献   
5.
Bottom ash and fly ash are the by-products of coal in thermal power plants. They are the combustion wastes and contain many elements that may harmful to the environment. The present study investigates the physiochemical, mineral, and leaching characteristics of an Indian coal ash (bottom ash and fly ash). From the characterization of bottom ash and fly ash, it is found that the ash samples are enriched predominantly in silica, alumina, and iron oxides. A series of leaching experiments have been performed to analyze the tracing elements of metal at the different liquid to solid ratio (L/S). The L/S varies from 20:1 to 80:1. From the leaching results of the fly ash and bottom ash data, it is observed that the tracing elements of Mn, Mg, Cr, Zn, Ni, Pb, Fe, and Cu are the most abundant elements, while Hg, Mo, and Co are the least abundant elements.  相似文献   
6.
Hydroxyapatite (HAp) is still one of the most widely used bioactive coating material to metallic implant in orthopedic fields because of its good biocompatibility, chemical and structural resemblance to natural bone, osteo-conductivity, coupled with quicker implant fixation and strong bonding between living bone with implants. Many techniques are used to deposit HAp as coating material on metallic implants among which plasma spray coating stands out as this process is cost effective, reliable, and protects surface of metal from wear and corrosion. Although, HAp is a smart choice as implant coating material, however, its medical application has been restricted because of the unfavorable mechanical properties like brittleness, weak fracture toughness and poor tensile strength. Further, HAp coated implants suffer from longer time period for remodeling, slow osseointegration rate and lack of antimicrobial effects/properties. Different methodologies have been adopted as surface modification techniques to increase mechanical as well as biological properties of HAp. Among those approaches use of dopants in HAp is a very efficient way for modification of properties. Therefore, aim of this review paper is to assemble information related to HAp coating by plasma spray technique on implants and discuss their advantages and limitations. The article also reports how addition of various doping ions into HAp can overcome these limitations by effecting structural, compositional, mechanical properties of HAp. Finally, it reports how the single, binary and multi ion dopants incorporation in the HAp structure can affect the properties which ultimately affect implant functionality when coated by plasma spraying method.  相似文献   
7.
Near‐infrared (NIR)‐to‐visible up‐conversion fluorescent nanoparticles have potential to be used for photodynamic therapy (PDT) in deep tissue because NIR light can penetrate thick tissue due to weak absorption in the optical window. Here a uniform layer of mesoporous silica is coated onto NaYF4 up‐converting nanocrystals, with a large surface area of ≈770 m2 g?1 and an average pore size of 2 nm. A photosensitizer, zinc phthalocyanine, is incorporated into the mesoporous silica. Upon excitation by a NIR laser, the nanocrystals convert NIR light to visible light, which further activates the photosensitizer to release reactive singlet oxygen to kill cancer cells. The photosensitizer encapsulated in mesoporous silica is protected from degradation in the harsh biological environment. It is demonstrated that the photosensitizers loaded into the porous silica shell of the nanoparticles are not released out of the silica while they continuously produce singlet oxygen upon excitation by a NIR laser. The nanoparticles are reusable as the photosensitizers encapsulated in the silica are removed by soaking in ethanol.  相似文献   
8.
A major contributing factor in triple-negative breast cancer progression is its ability to evade immune surveillance. One mechanism for this immunosuppression is through ribosomal protein S19 (RPS19), which facilitates myeloid-derived suppressor cells (MDSCs) recruitment in tumors, which generate cytokines TGF-β and IL-10 and induce regulatory T cells (Tregs), all of which are immunosuppressive and enhance tumor progression. Hence, enhancing the immune system in breast tumors could be a strategy for anticancer therapeutics. The present study evaluated the immune response of atovaquone, an antiprotozoal drug, in three independent breast-tumor models. Our results demonstrated that oral administration of atovaquone reduced HCC1806, CI66 and 4T1 paclitaxel-resistant (4T1-PR) breast-tumor growth by 45%, 70% and 42%, respectively. MDSCs, TGF-β, IL-10 and Tregs of blood and tumors were analyzed from all of these in vivo models. Our results demonstrated that atovaquone treatment in mice bearing HCC1806 tumors reduced MDSCs from tumor and blood by 70% and 30%, respectively. We also observed a 25% reduction in tumor MDSCs in atovaquone-treated mice bearing CI66 and 4T1-PR tumors. In addition, a decrease in TGF-β and IL-10 in tumor lysates was observed in atovaquone-treated mice with a reduction in tumor Tregs. Moreover, a significant reduction in the expression of RPS19 was found in tumors treated with atovaquone.  相似文献   
9.
Multi-ion doping in synthetic HA was carried out using high energy planetary ball milling followed by calcination at 1250?°C for 2?h. The influence of Sr+2, Zn+2, Ag+, and F- ion doping on crystallinity and crystallite size was analyzed using Taguchi design of experiments (DOE) and optimal concentration of different dopants has been identified to achieve desired crystallinity and crystallite size. The doped HA samples have been characterized using X-ray diffraction and Fourier transform infrared spectroscopy to determine their phase purity, degree of crystallinity, crystallite size and functional groups. Standard Analysis of variance (ANOVA) showed relatively high contribution of Sr+2 and Zn+2 doping in changing the crystallinity and crystal size of HA compared to the effect of Ag+ and F- doping. Our analysis demonstrated strong interaction between dopants at binary level doping, while ternary and quaternary doping of elements did not exhibit any interaction in influencing the crystallinity and crystallite size of HA. In general, multi-ion doping in HA found to decrease its crystallinity from 92% to 72% (max.), but enhance the hardness, depending on the type and concentration of doping element. Similarly, a minimum crystallite size of 31?nm was achieved with some binary compositions and other combinations resulted in crystallite sizes up to 59?nm. The compositions that ensure desired crystallinity and crystallite size can also provide high hardness. Our results can be used to tailor the composition of HA in achieving desired functional properties, dependent on crystallinity and crystallite size, such as strength, bioactivity and degradation to suit variety of implant applications.  相似文献   
10.
Electrocardiogram (ECG) electrodes are conductive pads applied to the skin to measure cardiac activity. Ag/AgCl electrodes are the commercial product which widely used to obtain ECGs. When monitoring the ECG in a hot spring, Ag/AgCl electrodes must be waterproofed; however, this is time-consuming, and the adhesive may tear the skin on removal. For solving the problem, we developed the carbon pencil lead (CPL) electrodes for use in hot springs. Both CPL and Ag/AgCl electrodes were connected to ECG100C’s cables. The Performance was evaluated in three conditions as following: hot spring water with and without bubble, and in cold water. In each environment, the procedure was followed by three different protocols that are recording from the dry condition, hot spring water immersion with and without movement, post hot spring water condition. Under dry and wet conditions, both electrodes can obtain the waveform of the ECG signal in which all PQRST waves were identifiable. Nevertheless, the signal quality of both types of electrodes was different in water immersion with and without movement. The overall morphology obtained by Ag/AgCl electrodes was unstable higher than that of CPL electrodes in immersion without movement condition. The CPL electrodes provided better ECG waveform quality compared to Ag/AgCl electrodes in which the ECG signal had high waveforms distortion in water immersion with movement condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号